Ethics of Biomaterials for Implants

  • Dennis Kwok-Wing Tam
  • Oliver Faust


Biomaterials are used to replace a missing biological structure, support a damaged biological structure, or enhance an existing biological structure (Basu et al. 2009; Park and Lakes 2007). The purpose of this reconstruction is to relieve pain, to restore function, and to facilitate healing (Martz et al. 1997). In most cases the biomaterial is shaped into a medical implant which is surgically placed inside the human body (Spiekermann 1995). Within the human body, the implant must interact with biological structures and systems (Williams 2009).


Biomaterials Unnecessary operations Professional conduct Dental implants Amalgam toxicity Breast augmentation 



Biomedical Engineering


Poly Implants Prosthesis


Polymethyl Methacrylate




Tooth Coloured Restorations


World Health Organization


  1. Altmann J (2001) Military uses of microsystem technologies. Dangers and preventive arms control. Agenda Verlag, MünsterGoogle Scholar
  2. ATSDR (Agency for Toxic Substances Disease Registry). (1999). Toxicological profile for ­mercury—update. Atlanta-GA. Accessed 11 Dec 2012
  3. Basu B, Katti DS, Kumar A (2009) Advanced biomaterials: fundamentals, processing, and applications [hardcover]. Wiley, Hoboken, NJCrossRefGoogle Scholar
  4. BAT Kommission der Deutschen Forschungsgemeinschaft (DFG) (1997) Mercury, metallic mercury and inorganic mercury compounds. In: Triebig G, Schaller KH (eds) Analyses of hazardous substances in biological material, vol 3. Wiley-VCH, München, pp 123–142Google Scholar
  5. Boger A, Bohner M, Heini P, Schwieger K, Schneider E (2008) Performance of vertebral cancellous bone augmented with compliant pmma under dynamic loads. Acta Biomater 4(6):1688–1693CrossRefGoogle Scholar
  6. Chan S, Harris J (2006) Cognitive regeneration or enhancement: the ethical issues. Regen Med 1:361–366CrossRefGoogle Scholar
  7. Chlupàc J, Filová E, Bacáková L (2009) Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiol Res 58(Suppl 2):S119–S139Google Scholar
  8. Daly BJ (2006) End-of-life decision making, organ donation, and critical care nurses. Crit Care Nurse 26(2):78–86MathSciNetGoogle Scholar
  9. de Vries RBM, Oerlemans A, Trommelmans L, Dierickx K, Gordijn B (2008) Ethical aspects of tissue engineering: a review. Tissue Eng Part B Rev 14:367–375CrossRefGoogle Scholar
  10. Deverall PB, Campalani G, Anderson DR (1985) Heart valve replacement. Arch Dis Child 60:1111–1112CrossRefGoogle Scholar
  11. Hamizah AS, Mariatti M, Othman R, Kawashita M, Noor Hayati AR (2012) Mechanical and thermal properties of polymethylmethacrylate bone cement composites incorporated with hydroxyapatite and glass-ceramic fillers. J Appl Polym Sci 125(S1):E661–E669CrossRefGoogle Scholar
  12. Hansson SO (2005) Implant ethics. J Med Ethics 31(9):519–525CrossRefGoogle Scholar
  13. Hörsted-Bindslev P (2004) Amalgam toxicity: environmental and occupational hazards. J Dent 32(5):359–365CrossRefGoogle Scholar
  14. IRIS (2002) Methylmercury. In: Integrated risk information system. Database quest, last revised: 12/03/2002. US-EPAGoogle Scholar
  15. Lanza R, Langer R, Vacanti JP (2007) Principles of tissue engineering. Tissue engineering intelligence unit. Elsevier Science, Burlington, MAGoogle Scholar
  16. Lidgren L (2001) Joint prosthetic infections: a success story. Acta Orthop Scand 72(6):553–556CrossRefGoogle Scholar
  17. Lidwell OM (1987) Joseph Lister and infection from the air. Epidemiol Infect 99:569–578CrossRefGoogle Scholar
  18. Maguire GQ, McGee EM (1999) Implantable brain chips? Time for debate. Hast Cent Rep 29(1):7–13CrossRefGoogle Scholar
  19. MAK Kommission der Deutschen Forschungsgemeinschaft (DFG) (1999) Mercury and inorganic mercury compounds. In: Greim H (ed) Occupational toxicants—critical data evaluation for mak values and classification of carcinogens by the commission for the investigation of health hazards of chemical compounds in the work area, vol 15. Wiley-VCH, München, pp 81–122Google Scholar
  20. Manivasagam G, Dhinasekaran D, Rajamanickam A (1997) Biomedical implants: corrosion and its prevention—a review. American Society for Testing and MaterialsGoogle Scholar
  21. Martz EO, Goel VK, Pope MH, Park JB (1997) Materials and design of spinal implants—a review. J Biomed Mater Res 38(3):267–288CrossRefGoogle Scholar
  22. Mason RO (1995) Applying ethics to information technology issues. Commun ACM 38:55–57CrossRefGoogle Scholar
  23. Miles SH, Siegler M, Schiedermayer DL, Lantos JD, La-Puma J (1990) The total artificial heart: an ethics perspective on current clinical research and deployment. Health Policy 16(2):175–176dCrossRefGoogle Scholar
  24. Narayan R (2009) Biomedical materials. WileyGoogle Scholar
  25. Nelson KE, Williams CM (2007) Infectious disease epidemiology: theory and practice, 2nd edn. Jones and Bartlett Publishers, Sudbury, MAGoogle Scholar
  26. Nielsen E, Ladefoged O, Larsen JC (2006) Risk assessment of contaminant intake from traditional Greenland food items. DFVF publikation, Department of Toxicology and Risk Assessment, Danish Institute for Food and Veterinary Research, DenmarkGoogle Scholar
  27. Nylander M, Weiner J (1991) Mercury and selenium concentrations and their interrelations in organs from dental staff and the general population. Br J Ind Med 48(11):729–734Google Scholar
  28. Oerlemans AJM, Rodrigues CHCML, Verkerk MA, van den Berg PP, Dekkers WJM (2010) Ethical aspects of soft tissue engineering for congenital birth defects in children—what do experts in the field say? Tissue Eng Part B Rev 17:229–234CrossRefGoogle Scholar
  29. Parens E (1995) The goodness of fragility: on the prospect of genetic technologies aimed at the enhancement of human capacities. Kennedy Inst Ethics J 5(2):141–53CrossRefGoogle Scholar
  30. Park JB, Lakes RS (2007) Biomaterials: an introduction. Springer, New York, NYGoogle Scholar
  31. Pruitt LA, Chakravartula AM (2011) Mechanics of biomaterials: fundamental principles for implant design. Cambridge texts in biomedical engineering. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  32. Ritchie KA, Gilmour WH, Macdonald EB, Burke FJT, McGowan DA, Dale IM, Hammersley R, Hamilton RM, Binnie V, Collington D (2002) Health and neuropsychological functioning of dentists exposed to mercury. Occup Environ Med 59(5):287–293CrossRefGoogle Scholar
  33. Ritchie KA, Burke FJT, Gilmour WH, Macdonald EB, Dale IM, Hamilton RM, McGowan DA, Binnie V, Collington D, Hammersley R (2004) Mercury vapour levels in dental practices and body mercury levels of dentists and controls. Br Dent J 197(10):625–632CrossRefGoogle Scholar
  34. Roskies AL (2002) Neuroethics for the new millennium. Neuron 35(1):21–23CrossRefGoogle Scholar
  35. Ruark JE, Raffin TA (1988) Initiating and withdrawing life support. N Engl J Med 318(1):25–30CrossRefGoogle Scholar
  36. Saha S, Pal S (1984) Mechanical properties of bone cement: a review. J Biomed Mater Res 18(4):435–462CrossRefGoogle Scholar
  37. Skare I, Engqvist A (1994) Human exposure to mercury and silver released from dental amalgam restorations. Arch Environ Health 49(5):384–394CrossRefGoogle Scholar
  38. Spiekermann H (1995) Implantology. In: Rateitschak KH, Wolf HF (eds) Color atlas of dental medicine. G. Thieme Verlag, New York, NYGoogle Scholar
  39. Sutow EJ, Maillet WA, Taylor JC, Hall GC, Millar M (2007) Time-dependent corrosion potential of newly-placed admixed dental amalgam restorations. Dent Mater 23:644–647Google Scholar
  40. Trommelmans L, Selling J, Dierickx K (2009) An exploratory survey on the views of European tissue engineers concerning the ethical issues of tissue engineering research. Tissue Eng Part B Rev 15(3):241–247CrossRefGoogle Scholar
  41. Tucker BP (1998) Deaf culture, cochlear implants, and elective disability. Hast Cent Rep 28(4): 6–14CrossRefGoogle Scholar
  42. UBA (Umweltbundesamt) (1999) Kommission, “Human-biomonitoring des umweltbundesamtes,” Berlin: Stoffmonographie Quecksilber—Referenz-und Human-Biomonitoring-(HBM)-Werte. Bundesgesundheitsbl. Gesundheitsforsch Gesundheitsschutz 42:522–532Google Scholar
  43. United Nations Environment Programme (2002) Governing Council, UNEP/Chemicals—Global mercury assessment. United Nations Environment ProgrammeGoogle Scholar
  44. van de Belt H, Neut D, Schenk W, Horn JRv, van der Mei HC, Busscher HJ (2001) Infection of orthopedic implants and the use of antibiotic-loaded bone cements: a review. Acta Orthop Scand 72(6):557–571CrossRefGoogle Scholar
  45. Vince KG, Insall JN, Kelly MA (1989) The total condylar prosthesis 10- to 12-year results of a cemented knee replacement. J Bone Joint Surg Br 71(5):793–797Google Scholar
  46. WHO (World Health Organisation) (1990). Environmental Health Criteria 101, Methylmercury. Geneva: World Health Organisation, International Programme on Chemical Safety.Google Scholar
  47. WHO (World Health Organisation) (1991). Environmental Health Criteria 118, Inorganic mercury. Geneva: World Health Organisation, International Programme on Chemical Safety.Google Scholar
  48. Weiner JA, Nylander M (1995). An estimation of the uptake of mercury from amalgam fillings based on urinary excretion of mercury in Swedish subjects. Sci Total Environ 168:255–265Google Scholar
  49. Williams DF (2009) On the nature of biomaterials. Biomaterials 30(30):5897–5909CrossRefGoogle Scholar
  50. Wood S, Jones R, Geldart A (2003) The social and economic challenges of nanotechnology. Technikfolgenabschätzung 12(3):72–73Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Electronic and Computer Engineering Division, School of EngineeringNgee Ann PolytechnicSingaporeSingapore

Personalised recommendations