Skip to main content

Do Cd, Cu, Ni, Pb, and Zn Biomagnify in Aquatic Ecosystems?

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology Volume 226

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 226))

Abstract

Trophic transfer (biotransference—Dallinger et al. 1987) results from passage of a contaminant through food chains as a result of uptake only from water (bioconcentration), only from diet (dietary accumulation), or from a combination of these (bioaccumulation) (Biddinger and Gloss 1984; Davis and Foster 1958; Macek et al. 1979; Suedel et al. 1994). Trophic transfer factors (TTFs) are analogous to bioaccumulation (accumulation) factors, the original terms used to describe steady-state tissue residues in an organism resulting from both water and dietary uptake pathways (Boroughs et al. 1957). TTFs are the same as biomagnification factors and also meet the definition of biomagnification when TTFs exceeding 1.0 are observed through three or more trophic levels as a result of at least two trophic transfers (Biddinger and Gloss 1984). Most investigators have assumed TTFs result mainly from dietary accumulation (Baptist and Lewis 1967; Mathews and Fisher 2008; Reinfelder et al. 1998), although it is not possible to distinguish aqueous from dietary uptake in field studies. Moreover, the relative importance of the diet and aqueous uptake pathways is context-dependent, varying with exposure duration, metal bioavailability, and the species and their prey. Application of the aquatic TTF concept, as currently understood, may have first been proposed by Baptist and Lewis (1967), and the term had been widely adopted by the early 1990s (Baudin and Nucho 1992; Dillon et al. 1995; Garnier-Laplace et al. 1997; Suedel et al. 1994).

Additional material for this chapter can be found on http://extras.springer.com

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams WJ, Blust R, Borgmann U, Brix KV et al (2011) Utility of tissue residues for predicting effects of metals on aquatic organisms. Integr Environ Assess Manage 7:75–98

    Article  CAS  Google Scholar 

  • Baines SB, Fisher NS, Stewart AR (2002) Assimilation and retention of selenium and other trace elements from crustacean food by juvenile striped bass (Morone saxatilis). Limnol Oceanogr 47(3):646–655

    Article  Google Scholar 

  • Baptist JP, Lewis CW (1967) Transfer of 65Zn and 51Cr through an estuarine food chain. In: Nelson DJ, Evans FC (eds) Symposium on radioecology, proceedings of the second national symposium. U.S. Atomic Energy Commission, Ann Arbor, MI, pp 420–430

    Google Scholar 

  • Barwick M, Maher W (2003) Biotransference and biomagnification of selenium, copper, ­cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie Estuary, NSW, Australia. Mar Environ Res 56:471–502

    Article  CAS  Google Scholar 

  • Baudin J, Nucho R (1992) 60Co accumulation from sediment and planktonic algae by midge larvae (Chironomus luridus). Environ Pollut 76:133–140

    Article  CAS  Google Scholar 

  • Besser JM, Brumbaugh WG, Brunson EL, Ingersoll CG (2005) Acute and chronic toxicity of lead in water and diet to the amphipod Hyalella azteca. Environ Toxicol Chem 24:1807–1815

    Article  CAS  Google Scholar 

  • Biddinger GR, Gloss SP (1984) The importance of trophic transfer in the bioaccumulation of chemical contaminants in aquatic ecosystems. Res Rev 91:103–145

    Article  CAS  Google Scholar 

  • Borga K, Kidd KA, Muir DCG, Berglund O, Conder JM, Gobas FAPC (2011) Trophic magnification factors: considerations of ecology, ecosystems, and study design. Integr Environ Assess Manage 8:64–84

    Article  Google Scholar 

  • Boroughs H, Chipman WA, Rice TR (1957) Laboratory experiments on the uptake, accumulation, and loss of radionuclides by marine organisms (Chapter 8). In: National Academy of Sciences (ed) The effects of atomic radiation on oceanography and fisheries (Publication 551). National Academy of Sciences, National Research Council, Washington, DC

    Google Scholar 

  • Brown PB (2005) Nutritional considerations for fish and invertebrates. In: Meyer JS, Adams WJ, Brix KV, Luoma SN, Mount DR, Stubblefield WA, Wood CM (eds) Toxicity of dietborne metals to aquatic organisms. SETAC Press, Pensacola, FL, 329 pp

    Google Scholar 

  • Bruggeman WA, Operhuizen A, Wibenga A, Hutzinger O (1984) Bioaccumulation of super-­lipophilic chemicals in fish. Toxicol Environ Chem 7:173–189

    Article  CAS  Google Scholar 

  • Burdick G, Harris E, Dean H, Walker T, Skea J, Colby D (1964) The accumulation of DDT in lake trout and the effect on reproduction. Trans Am Fish Soc 93:127–136

    Article  CAS  Google Scholar 

  • Bury NR, Walker PA, Glover CN (2003) Nutritive metal uptake in teleost fish. J Exp Biol 206:11–23

    Article  CAS  Google Scholar 

  • Campbell LM, Norstrom RJ, Hobson KA, Muir DCG, Backus S, Fisk AT (2005) Mercury and other trace elements in a pelagic Arctic marine food web (Northwater Polynya, Baffin Bay). Sci Total Environ 351–352:247–263

    Article  Google Scholar 

  • Cheung MS, Fok EMW, Ng TYT, Yen YF, Wang WX (2006) Subcellular cadmium distribution, accumulation, and toxicity in a predatory gastropod, Thais clavigera, fed different prey. Environ Toxicol Chem 25:174–181

    Article  CAS  Google Scholar 

  • Cheung MS, Wang WX (2008) Analyzing biomagnification of metals in different food webs using nitrogen isotopes. Mar Pollut Bull 56:2082–2105

    Article  CAS  Google Scholar 

  • Croteau MN, Luoma SN, Stewart AR (2005) Trophic transfer of metals along freshwater food webs: evidence of cadmium biomagnification in nature. Limnol Oceanogr 50:1511–1519

    Article  CAS  Google Scholar 

  • Croteau MN, Luoma SN (2008) A biodynamic understanding of dietborne metal uptake by a freshwater invertebrate. Environ Sci Technol 42:1801–1806

    Article  CAS  Google Scholar 

  • Croteau MN, Luoma SN (2009) Predicting dietborne metal toxicity from metal influxes. Environ Sci Technol 43:4915–4921

    Article  CAS  Google Scholar 

  • Dallinger R, Prosi F, Segner H, Back H (1987) Contaminated food and uptake of heavy metals by fish: a review and a proposal for further research. Oecologia 73:91–98

    Article  Google Scholar 

  • Davis J, Foster R (1958) Bioaccumulation of radioisotopes through aquatic food chains. Ecology 39:530–535

    Article  CAS  Google Scholar 

  • Davis DA, Gatlin M III (1996) Dietary mineral requirements of fish and marine crustaceans. Rev Fish Sci 4(1):75–99

    Article  Google Scholar 

  • DeForest DK, Brix KV, Adams WJ (2007) Assessing metal bioaccumulation in aquatic ­environments: the inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration. Aquat Toxicol 84:236–246

    Article  CAS  Google Scholar 

  • Dillon TM, Suedel BC, Peddicord, RK, Clifford, PA, Boraczek JA (1995) Trophic transfer and biomagnification potential of contaminants in aquatic ecosystems. EEDP-01-033. Environmental Effects of Dredging Technical Notes. US Army Engineer Waterways Experiment Station, Vicksburg, Miss 12 pp

    Google Scholar 

  • Dutton S, Fisher NS (2010) Intraspecific comparisons of metal bioaccumulation in the juvenile Atlantic silverside Menidia menidia. Aquat Biol 10:211–226

    Article  Google Scholar 

  • Farag AM, Woodward DF, Goldstein JN, Brumbaugh W, Meyer JS (1998) Concentrations of metals associated with mining waste in sediments, biofilm, benthic macroinvertebrates, and fish from the Coeur d’Alene River basin. Idaho. Arch Environ Contam Toxicol 34:119–127

    Article  CAS  Google Scholar 

  • Farag AM, Nimick DA, Kimball BA, Church SE, Harper DD, Brumbaugh WG (2007) Concentrations of metals in water, sediment, biofilm, benthic macroinvertebrates, and fish in the Boulder River watershed, Montana, and the role of colloids in metal uptake. Arch Environ Contam Toxicol 52:397–409

    Article  CAS  Google Scholar 

  • Fisk AT, Norstrom RJ, Cymbalisty CD, Muir CDG (1998) Dietary accumulation and depuration of hydrophobic organochlorines: bioaccumulation parameters and their relationship with the octanol/water partition coefficient. Environ Toxicol Chem 17:951–961

    Article  CAS  Google Scholar 

  • Garnier-Laplace J, Vray F, Baudin J (1997) A dynamic model for radionuclide transfer from water to freshwater fish. Water Air Soil Pollut 98:141–166

    CAS  Google Scholar 

  • Guan R, Wang W-X (2004) Dietary assimilation and elimination of Cd, Se, and Zn by Daphnia magna at different metal concentrations. Environ Toxicol Chem 23:2689–2698

    Article  CAS  Google Scholar 

  • Hunt EG (1966) Biological magnification of pesticides. In: National Research Council (ed) Scientific aspects of pest control (Publication 1402). National Academy of Sciences and National Research Council, Washington, DC

    Google Scholar 

  • Isaacs JD (1973) Unstructured marine food webs and pollutant analogues. Fish Bull 70:1053–1059

    Google Scholar 

  • Jara-Marini ME, Soto-Jiménez MF, Páez-Osuna F (2009) Trophic relationships and transference of cadmium, copper, lead and zinc in a subtropical coastal lagoon food web from SE Gulf of California. Chemosphere 77:1366–1373

    Article  CAS  Google Scholar 

  • Ju Y-R, Chen W-Y, Singh S, Liao C-M (2011) Trade-offs between elimination and detoxification in rainbow trout and common bivalve molluscs exposed to metal stressors. Chemosphere 85:1048–1056

    Article  CAS  Google Scholar 

  • Krumholz LA, Foster RF (1957) Ecological factors involved in the uptake, accumulation, and loss of radionuclides by aquatic organisms (Chapter 7). In: National Academy of Sciences (ed) The effects of atomic radiation on oceanography and fisheries (Publication 551). National Academy of Sciences, National Research Council, Washington, DC

    Google Scholar 

  • Lapointe D, Gentes S, Ponton DE, Hare L, Couture P (2009) Influence of prey type on nickel and thallium assimilation, subcellular distribution and effects in juvenile fathead minnows (Pimephales promelas). Environ Sci Technol 43:8665–8670

    Article  CAS  Google Scholar 

  • Luoma SN, Rainbow PS (2005) Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environ Sci Technol 39:1921–1931

    Article  CAS  Google Scholar 

  • Macek KJ, Petrocelli SR, Sleight BH (1979) Considerations in assessing the potential for, and significance of biomagnification of chemical residues in aquatic food chains. In: Marking LL, Kimerle RA (eds) Aquatic toxicology, STP 667. American Society for Testing and Materials, Philadelphia, PA, pp 251–268

    Google Scholar 

  • Mathews T, Fisher NS (2008) Evaluating the trophic transfer of cadmium, polonium, and methylmercury in an estuarine food chain. Environ Toxicol Chem 27:1093–1101

    Article  CAS  Google Scholar 

  • McAlpine D, Araki S (1959) Minamata disease: late effects of an unusual neurological disorder caused by contaminated fish. AMA Arch Neurol 1:522–530

    Article  Google Scholar 

  • McGeer J, Brix KV, Skeaff JM, DeForest DK, Brigham SI, Adams WJ, Green AS (2003) The inverse relationship between bioconcentration factor and exposure concentration for metals: implications for hazard assessment of metals in the aquatic environment. Environ Toxicol Chem 22:1017–1037

    Article  CAS  Google Scholar 

  • Meador J (2006) Rationale and procedures for using the tissue-residue approach for toxicity assessment and determination of tissue, water, and sediment quality guidelines for aquatic organisms. Human Ecol Risk Assess 12:1018–1073

    Article  CAS  Google Scholar 

  • Peakall DB (1969) Effect of DDT on calcium uptake and vitamin D metabolism in birds. Nature 224:1219–1220

    Article  CAS  Google Scholar 

  • Peakall D, Lincer J (1970) Polychlorinated biphenyls, another long-life widespread chemical in the environment. Bioscience 20:958–964

    Article  CAS  Google Scholar 

  • Petchey OW, Beckerman AP, Riede JO, Warren PH (2008) Size, foraging, and food web structure. Proc Natl Acad Sci U S A 105:4191–4196

    Article  CAS  Google Scholar 

  • Phillips DJH, Rainbow PS (1989) Strategies of trace metal sequestration in aquatic organisms. Mar Environ Res 28:207–210

    Article  CAS  Google Scholar 

  • Ponton DE, Hare L (2010) Nickel dynamics in the lakewater metal biomonitor Chaoborus. Aquat Toxicol 96:37–43

    Google Scholar 

  • Quinn MR, Feng X, Folt CL, Chamberlain CP (2003) Analyzing trophic transfer of metals in stream food webs using nitrogen isotopes. Sci Total Environ 317:73–89

    Article  CAS  Google Scholar 

  • Rainbow PS (1997a) Ecophysiology of trace metal uptake in crustaceans. Estuar Coast Shelf Sci 44:169–175

    Article  CAS  Google Scholar 

  • Rainbow PS (1997b) Trace metal accumulation in marine invertebrates: marine biology or marine chemistry? J Mar Biol Assoc UK 77:195–210

    Article  CAS  Google Scholar 

  • Rainbow PS, White SL (1989) Comparative strategies of heavy metal accumulation by crustaceans: zinc, copper and cadmium in a decapod, an amphipod and a barnacle. Hydrobiologia 174:245–262

    Article  CAS  Google Scholar 

  • Rainbow PS, Phillips DJH, Depledge MH (1990) The significance of trace metal concentrations in marine invertebrates: a need for laboratory investigations of accumulation strategies. Mar Pollut Bull 21:321–324

    Article  CAS  Google Scholar 

  • Rainbow PS, Poirier L, Smith BD, Brix KV, Luoma SN (2006) Trophic transfer of trace metals: subcellular compartmentalization in a polychaete and assimilation by a decapod crustacean. Mar Ecol Prog Ser 308:91–100

    Article  CAS  Google Scholar 

  • Reinfelder JR, Fisher NS, Luoma SN, Nichols JW, Wang W-X (1998) Trace element trophic transfer in aquatic organisms: a critique of the kinetic model approach. Sci Total Environ 219:117–135

    Article  CAS  Google Scholar 

  • Ruangsomboon S, Wongrat L (2006) Bioaccumulation of cadmium in an experimental aquatic food chain involving phytoplankton (Chlorella vulgaris), zooplankton (Moina macrocopa), and the predatory catfish Clarias macrocephalus X C. gariepinus. Aquat Toxicol 78:15–20

    Google Scholar 

  • Saiki MK, Castleberry DT, May TW, Martin BA, Bullard FN (1995) Copper, cadmium, and zinc concentrations in aquatic food chains from the Upper Sacramento River (California) and selected tributaries. Arch Environ Contam Toxicol 29:484–491

    Article  CAS  Google Scholar 

  • Schafer HA, Hershelman, GP, Young, DR, Mearns AJ (1982) Contaminants in ocean food webs. In: Coastal Water Research Project Biennial Report for the Year 1981. 12 pp. [ftp://ftp.sccwrp.org/pub/download/DOCUMENTS/AnnualReports/1981_82AnnualReport/AR81-82_017.pdf]

  • Schmidt TS, Clements WH, Zuellig RE, Mitchell KA, Church SE, Wanty RB, San Juan CA, Adams M, Lamothe PJ (2011) Critical tissue residue approach linking accumulated metals in aquatic insects to population and community-level effects. Environ Sci Technol 45:7004–7010

    Article  CAS  Google Scholar 

  • Seiler, RL, Skorupa JP (2001) National irrigation water quality program data synthesis. http://pubs.usgs.gov/of/2000/ofr00513/

  • Suedel B, Boraczek J, Peddicord R, Clifford P, Dillon T (1994) Trophic transfer and biomagnification potential of contaminants in aquatic ecosystems. Rev Environ Contam Toxicol 136:21–89

    Article  CAS  Google Scholar 

  • Timmermans KR, Van Hattum B, Kraak MHS, Davids C (1989) Trace metals in a littoral foodweb: concentrations in organisms, sediment and water. Sci Total Environ 87(88):477–494

    Article  Google Scholar 

  • Vighi M (1981) Lead uptake and release in an experimental trophic chain. Ecotoxicol Environ Saf 5:177–193

    Google Scholar 

  • Vivjer MG, Van Gestel CA, Lanno RP, Van Straalen NM, Peijnenburg WJGM (2004) Internal metal sequestration and its toxicological relevance: a review. Environ Sci Technol 38:4705–4712

    Article  Google Scholar 

  • Wallace WG, Lopez GR (1997) Bioavailability of biologically sequestered cadmium and the implications of metal detoxification. Mar Ecol Prog Ser 147:149–157

    Article  CAS  Google Scholar 

  • Wallace WG, Lee BG, Luoma SN (2003) Subcellular compartmentalization of Cd and Zn in two bivalves. I. Significance of metal-sensitive fractions (MSF) and biologically detoxified metal (BDM). Mar Ecol Prog Ser 249:183–197

    Article  CAS  Google Scholar 

  • Wang W-X (2002) Interactions of trace metals and different marine food chains. Mar Ecol Prog Ser 243:295–309

    Article  CAS  Google Scholar 

  • Wang WX, Fisher NS (1999) Delineating metal accumulation pathways for marine invertebrates. Sci Total Environ 237–238:459–472

    Article  Google Scholar 

  • Wang WX, Rainbow PS (2008) Comparative approaches to understand metal bioaccumulation in aquatic animals. Comp Biochem Physiol 148C:315–323

    CAS  Google Scholar 

  • Watanabe K, Monaghan MT, Takemon Y, Omura T (2008) Biodilution of heavy metals in a stream macroinvertebrate food web: evidence from stable isotope analysis. Sci Total Environ 394:57–67

    Article  CAS  Google Scholar 

  • White SL, Rainbow PS (1985) On the metabolic requirements for copper and zinc in molluscs and crustaceans. Mar Environ Res 16:215–229

    Article  CAS  Google Scholar 

  • Xu Y, Wang WX (2002) Exposure and potential food chain transfer factor of Cd, Se and Zn in marine fish Lutjanus argentimaculatus. Mar Ecol Prog Ser 238:173–186

    Article  CAS  Google Scholar 

  • Zhang L, Wang W-X (2007) Size-dependence of the potential for metal biomagnification in early life stages of marine fish. Environ Toxicol Chem 26:787–794

    Article  Google Scholar 

Download references

Acknowledgments

This assessment was partially funded by Rio Tinto. KVB was supported by the SETAC/ICA Chris Lee Award for Metals Research. This manuscript was improved based on the reviews performed by Drs. Jim Meador and Alan Mearns, and the Journal editor. We are grateful for their efforts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rick D. Cardwell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cardwell, R.D., DeForest, D.K., Brix, K.V., Adams, W.J. (2013). Do Cd, Cu, Ni, Pb, and Zn Biomagnify in Aquatic Ecosystems?. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology Volume 226. Reviews of Environmental Contamination and Toxicology, vol 226. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6898-1_4

Download citation

Publish with us

Policies and ethics