Skip to main content

Current Approaches for Mitigating Acid Mine Drainage

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology Volume 226

Abstract

Acid mine drainage (AMD) is one of the largest environmental problems faced by mining and mineral industries globally (Akcil and Koldas 2006; Akabzaa et al. 2007). AMD is mainly associated with sulphide-rich metalliferous ore deposits, viz., copper, lead, zinc, gold, nickel, tin, and uranium mines (Naicker et al. 2003; Nieto et al. 2007) and coal mines (Bell et al. 2001; Sahoo et al. 2012), which were formed under marine conditions and contain abundant reactive framboidal pyrite (Carrucio and Fern 1974; Campbell et al. 2001). In Table 1 , we present a list of wellknown AMD sites worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ačai P, Sorrenti E, Polakovič M, Kongolo M, Donato PD (2009) Pyrite passivation by humic acid investigated by inverse liquid chromatography. Colloid Surface Physicochem Eng Aspect 337:39–46

    Google Scholar 

  • Akabzaa TM, Armah TEK, Baneong-Yakubo BK (2007) Prediction of acid mine drainage generation potential in selected mines in the Ashanti Metallogenic Belt using static geochemical methods. Environ Geol 52:957–964

    CAS  Google Scholar 

  • Akcil A, Koldas S (2006) Acid mine drainage (AMD): causes, treatment and case studies. J Cleaner Product 14:1139–1145

    Google Scholar 

  • Al TA, Martin CJ, Blowes DW (2000) Carbonate–mineral/water interaction in sulfide-rich mine tailings. Geochim Cosmochim Acta 64:3933–3948

    CAS  Google Scholar 

  • AMEC (2010) Mina de cobre Panamá project feed study—executive summary, minera panama, S.A. (http://www.inmetmining.com/Theme/Inmet/files/Section%200Executive%20Summary_FinalFEED_31%20March.pdf)

  • Beck SW (2003) Passivation of weathered and fresh sulfidic rock, A thesis for the degree of Master of Science in Metallurical Engineering, Unv of Neneda, Reno

    CAS  Google Scholar 

  • Bacelar-Nicolau P, Johnson DB (1999) Leaching of pyrite by acidophilic heterotrophic iron-­oxidizing bacteria in pure and mixed cultures. Appl Environ Microbiol 65(2):585–590

    CAS  Google Scholar 

  • Backes CA, Pulford ID, Duncan HJ (1987) Studies on the oxidation of pyrite in colliery spoil: inhibition of the oxidation by amendment treatments. Recl Reveg Res 6:1–11

    CAS  Google Scholar 

  • Bell FG, Bullock SET, Hälbich TFJ, Londsay P (2001) Environmental impacts associated with an abandoned mine in the Witbank Coalfield, South Africa. Int J Coal Geol 45:195–216

    CAS  Google Scholar 

  • Belzile N, Maki S, Chen YW, Goldsack D (1997) Inhibition of pyrite oxidation by surface treatment. Sci Total Environ 196:177–186

    CAS  Google Scholar 

  • Benzaazoua M, Bussière B, Kongolo M, McLaughlin J, Marion P (2000) Environmental desulphurization of four canadian mine tailings using froth flotation. Int J Mineral Processing, 60:57–74

    CAS  Google Scholar 

  • Bessho M, Wajima T, Ida T, Nishiyama T (2011) Experimental study on prevention of acid mine drainage by silica coating of pyrite waste rocks with amorphous silica solution. Environ Earth Sci 64:311–318

    CAS  Google Scholar 

  • Benzaazoua M, Bussière B, Lelièvre J (1998) Flotation non-sèlective des minèraux sulphurès appliqué dans la gestion environmntale des rejects miniers. Proceedings of Canadian Minetal Processors, Ottawa (Canada):682–695

    CAS  Google Scholar 

  • Black A, Craw D (2001) Arsenic, copper and zinc occurrence at the Wangaloa coal mine, southeast Otago, New Zealand. Int J Coal Geol 45:181–193

    CAS  Google Scholar 

  • Blowes DW, Reardon EJ, Jambor JL, Cherry JA (1991) The formation and potential importance of cemented layers in inactive sulphide mine railings. Geochim Cosmochim Acta 55:965–978

    CAS  Google Scholar 

  • Bois D, Poirier P, Benzaazoua M, Bussière BA (2004) Feasibility study on the use of desulphurized tailings to control acid mine drainage. In: Proceedings 2004—36th annual meeting of the Canadian mineral processors, January 20–22, 2004, Ottawa, ON, pp 361–380

    Google Scholar 

  • Brady KBC, Smith MW, Beam RL, Cravotta CA (1990) Effectiveness of the addition of alkaline materials at surface coal mines in preventing or abating acid mine drainage—part 2. Mine site case studies. In: Skousen J, Sencindiver J, Samuel D (eds) Proceedings of the 1990 mining and reclamation conference and exhibition, Charleston, West Virginia, April 23–26, 1990, Morgantown, W.Va, West Virginia University Publication, vol 1, pp 227–241

    Google Scholar 

  • Broekman BR, Penman DW (1991) The Prieske experience: flotation development in copper-zinc separation. J S Afr Inst Min Metall 91:257–265

    CAS  Google Scholar 

  • Brousseau JHR, Seed LP, Lin MY, Shelp GS, Fyfe JD (2000). In: Singhal RK, Mehrotra AK (eds) Proceedings sixth international conference on environmental issues and management of waste in energy and mineral production: SWEMP 2000, Calgary, Alberta, Canada

    Google Scholar 

  • Brown M, Barley B, Wood H (2002) Minewater treatment: technology, application and policy. International Water Association Publishing, London

    Google Scholar 

  • Bulusu S, Aydilek AH, Rustagi N (2007) CCB-based encapsulation of pyrite for remediation of acid mine drainage. J Hazard Mater 143:609–619

    CAS  Google Scholar 

  • Bussière B (2007) Colloquium 2004: hydrogeotechnical properties of hard rock tailings from metal mines and emerging geoenvironmental disposal practices. Can Geotech J 44:1019–1052

    Google Scholar 

  • Bussiere B, Benzaazoua M, Aubertic M, Mbonimpa M (2004) A laboratory study of covers made of low-sulfide tailings to prevent acid mine drainage. Environ Geol 45:609–622

    CAS  Google Scholar 

  • Cai MF, Dang Z, Chen YW, Belzile N (2005) The passivation of pyrrhotite by surface coating. Chemosphere 61:659–667

    CAS  Google Scholar 

  • Caldeira CL, Ciminelli VST, Asare KO (2010) The role of carbonate ions in pyrite oxidation in aqueous systems. Geochim Cosmochim Acta 74:1777–1789

    CAS  Google Scholar 

  • Campbell RN, Lindsay P, Clemens AH (2001) Acid generating potential of waste rock and coal ash in New Zealand coal mines. Int J Coal Geol 45:163–179

    CAS  Google Scholar 

  • Cárdenes V, Eynde VD, Paradelo R, Monterroso C (2009) Passivation techniques to prevent corrosion of iron sulfides in roofing slates. Corrosion Sci 51:2387–2392

    Google Scholar 

  • Caruccio FT (1983) The effect of plastic liner on acid loads: DLM site. In: Proceedings, fourth annual West Virginia surface mine drainage task force symposium, Morgantown, WV, 26 May 1983

    Google Scholar 

  • Caruccio FT, Ferm JC (1974) Paleoenvironment—predictor of acid mine drainage problems. In: Proceedings of the 5th coal mine drainage research symposium, National Coal Association (USA), Kentucky, pp 5–9

    Google Scholar 

  • Casiot C, Leblanc M, Bruneel O, Personne JC, Koffi K, Elbaz-poulichet F (2003a) Formation of As-rich waters within a tailings impoundment (Carnoulès, France). Aquatic Geochem 9:273–290

    CAS  Google Scholar 

  • Casiot C, Morin G, Juillot F, Bruneel O, Personne J, Leblanc M, Duquesne K, Bonnefoy V, Elbaz-­Poulichet F (2003b) Bacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoulès creek, France). Water Res 37:2929–2936

    CAS  Google Scholar 

  • Chen YW, Yuerong L, Cai MF, Belzile N, Dang Z (2006) Preventing oxidation of iron sulfide minerals by polyethylene polyamines. Mineral Eng 19:19–27

    CAS  Google Scholar 

  • Chon H, Hwang J (2000) Geochemical characteristics of the acid mine drainage in the water ­system in the vicinity of the Dogye coal mine in Korea. Environ Geochem Health 22: 155–172

    CAS  Google Scholar 

  • Cravotta CA, Brightbill RA, Langland MJ (2010) Abandoned mine drainage in the swatara creek basin, Southern Anthracite Coalfield, Pennsylvania, USA: 1. Stream water quality trends coinciding with the return of fish, USGS Published Report, University of Nebraska—Lincoln

    Google Scholar 

  • Dave NK, Vivyurka AJ (1994) Water cover on acid generating uranium tailings—laboratory and field studies. In: Proceedings of 4th international conference on acid rock drainage, vol 1, pp 297–306

    Google Scholar 

  • Davé NK, Lim TP, Horne D, Boucher Y, Stuparyk R (1997) Water cover on reactive tailings and waste rock: laboratory studies of oxidation and metal release characteristics. In: Proceedings of the fourth ICARD, Vancouver, pp 779–794

    Google Scholar 

  • De Vries NHC (1996) Process for treating iron-containing sulfide rocks and ores. US Patent 5,587,001

    Google Scholar 

  • Demers I, Bussière B, Benzaazoua M, Mbonimpa M, Blier A (2008) Column test investigation on the performance of monolayer covers made of desulphurized tailings to prevent acid mine drainage. Mineral Eng 21:317–329

    CAS  Google Scholar 

  • Dugan PR (1987) Prevention of formation of acid drainage from high-sulfur coal refuse by inhibition of iron and sulfur-oxidizing microorganisms: II. Inhibition, in “Run of Mine” refuse under simulated field condition. Biotechnol Bioeng 29:29–54

    Google Scholar 

  • Dugan PR, Apel WA (1983) Bacteria and acidic drainage from coal refuse: inhibition by sodium lauryl sulfate and sodium benzoate. Appl Environ Microbiol 46:279

    CAS  Google Scholar 

  • Duval JFL, Sorrenti E, Waldvogel Y, Gorner T, Donato PD (2007) On the use of electrokinetic phenomena of the second kind for probing electrode kinetic properties of modified electron-­conducting surfaces. Phys Chem Chem Phys 9:1713–1729

    CAS  Google Scholar 

  • Eger P, Antonson D (2002) “Use of microencapsulation to prevent acid rock drainage”, report to MSE technology applications. Minnesota Department of Natural Resources, St. Paul, Minnesota

    Google Scholar 

  • Eger P, Antonson D (2004) Use of microencapsulation to prevent acid rock drainage. Minnesota Department of Natural Resources, St. Paul, Minnesota

    Google Scholar 

  • Eger P, Mitchell P (2007) “The use of microencapsulation to prevent acid rock drainage,” presented at mining and the environment IV conference, Sudbury, Ontario, Canada, 19–27 Oct 2007

    Google Scholar 

  • Egiebor NO, Oni B (2007) Acid rock drainage formation and treatment: a review. Asia Pacific J Chem Eng 2:47–62

    CAS  Google Scholar 

  • Elsetinow A (2006) Method for inhibiting oxidation of metal sulfide-containing material. Patent 7,153,541

    Google Scholar 

  • Elsetinow AR, Schoonew AA, Strongin DR (2001) Aqueous geochemical and surface science investigation on the effect on phosphate on pyrite oxidation. Environ Sci Technol 35:2252–2257

    CAS  Google Scholar 

  • Elsetinow AR, Borda MJ, Schoonen MAA, Strongin DR (2003) Suppression of pyrite oxidation in acidic aqueous environments using lipids having two hydrophobic tails. Adv Environ Res 7:969–974

    CAS  Google Scholar 

  • ENPAR Technologies Inc. (2000) Electrochemical cover for mine wastes. Patent pending, WO 01/38233 A1

    Google Scholar 

  • ENPAR Technologies Inc. (2002) Innovative amdel electrochemical cover technology proceeds to field testing at the golden sunlight mine. USEPA, Montana, USA

    Google Scholar 

  • Equeenuddin SM, Tripathy S, Sahoo PK, Panigrahi MK (2010) Hydrogeochemical characteristics of acid mine drainage and water pollution. J Geochem Explor 105:75–82

    CAS  Google Scholar 

  • Equeenuddin SM, Tripathy S, Sahoo PK, Panigrahi MK (2013) Metal behavior in sediments associated with acid mine drainage stream: role of pH. J Geochem Explor 124:230–237

    CAS  Google Scholar 

  • European Food Safety Authority (EFSA), Parma, Italy (2011) Conclusion on the peer review of the pesticide risk assessment of the active substance 8-hydroxyquinoline. EFSA J 9:1964

    Google Scholar 

  • Evangelou VP (1994) Microencapsulation of pyrite by artificial inducement of FePO4 coatings. In: Proceedings of second international conference on the abatement of acid drainage, Pittsburgh, PA, 24–29 April. United States Bureau of Mines Special Publication SP 06A-94, 2, 321

    Google Scholar 

  • Evangelou VP (1995a) Pyrite oxidation and its control. CRC, New York

    Google Scholar 

  • Evangelou VP (1995b) Potential microencapsulation of pyrite by artificial inducement of ferric phosphate coatings. J Environ Qual 24:535–542

    CAS  Google Scholar 

  • Evangelou VP (1996) Oxidation proof silica surface coating iron sulfides. US Patent 5,494,703

    Google Scholar 

  • Evangelou VP (2001) Pyrite microencapsulation technologies: principles and potential field application. Ecol Eng 17:165–178

    Google Scholar 

  • Evangelou VP, Zhang YL (1995) A review: pyrite oxidation mechanisms and acid mine drainage prevention. Crit Rev Environ Sci Technol 25:141–199

    CAS  Google Scholar 

  • Felipe V (2008) Permanganate passivation: a study of the longevity of the process and its behavior under different external conditions. M.S. thesis, University of Nevada, Reno, 72 pages; 1460786

    Google Scholar 

  • Fernandes HM, Franklin MR (2001)Assessment of acid rock drainage pollutants release in the uranium mining site of Poços de Caldas – Brazil. J Environ Radioact 54:5–25

    Google Scholar 

  • Filion MP, Sirois LL, Ferguson K (1990) Acid mine drainage research in Canada. CIM Bull 83:33–40

    Google Scholar 

  • Fugill RJ, Sencindiver JC (1986) Effect of topsoil and vegetation on the generation of acid mine drainage from coal refuse. In: Proceedings seventh annual WV surface mine drainage task force symposium, West Virginia mining and reclamation association, Charleston, WV

    Google Scholar 

  • Gazea B, Adam K, Kontopoulos A (1996) A review of passive system for the treatment of acid mine drainage. Mineral Eng 9:23–42

    CAS  Google Scholar 

  • Geidel G, Caruccio FT (1984) A field evaluation of the selective placement of acidic material within the backfill of a reclaimed coal mine. In: Proceedings of the 1984 symposium on surface mining, sedimentology and reclamation, University of Kentucky, Lexington, KY, pp 127–131

    Google Scholar 

  • Geller W, Klapper H, Schultze M (1998) Natural and anthropogenic sulfuric acidification of lakes. In: Klapper W, Salomons W, Geller W (eds) Acidic mining lakes. Springer, Berlin, pp 3–15

    Google Scholar 

  • Georgopoulou ZJ, Fytas K, Soto H, Evangelou B (1996) Feasibility and cost of creating an iron-­phosphate coating on pyrrhotite to prevent oxidation. Environ Geol 28:61–69

    CAS  Google Scholar 

  • Glover R (2007) Permanganate passivation of pyrite containing ores: scale up and characterization. MS thesis. University of Nevada, Reno; UMI number 1446427. http://www.docin.com/p-­232211543.html

  • Gomes MEP, Favas PJC (2006) Mineralogical controls on mine drainage of the abandoned Ervedosa tin mine in north-eastern Portugal. Appl Geochem 21:1322–1334

    Google Scholar 

  • Goel PK (2006) Water pollution causes effects and control, 2nd edn. New Age International Publishers, New Delhi

    Google Scholar 

  • Groudev S, Georgiev P, Spasova I, Nicolova M (2008) Bioremediation of acid mine drainage in a uranium deposit. Hydrometallurgy 94:93–99

    Google Scholar 

  • Grout JA, Levings CD (2001) Effects of acid mine drainage from an abandoned copper mine, Britannia Mines, Howe Sound, British Columbia, Canada, on transplanted blue mussels (Mytilus edulis). Marine Environ Res 51:265–288

    CAS  Google Scholar 

  • Güler T (2005) Dithiophosphinate–pyrite interaction: voltametry and DRIFT spectroscopy investigations at oxidizing potentials. J Colloid Interface Sci 288:319–324

    Google Scholar 

  • Hallberg RO, Granhagen JR, Liljemark A (2005) A fly ash/biosludge dry cover for the mitigation of AMD at the falun mine. Chemie der Erde 65:43–63

    CAS  Google Scholar 

  • Hao J, Cleveland C, Lim E, Strongin DR, Schoonen MAA (2006) The effect of adsorbed lipid on pyrite oxidation under biotic conditions. Geochem Trans 7:8

    Google Scholar 

  • Hao J, Murphy R, Lim E, Schoonen MAA, Strongin DR (2009) Effects of phospholipid on pyrite oxidation in the presence of autotrophic and heterotrophic bacteria. Geochim Cosmochim Acta 73:4111–4123

    CAS  Google Scholar 

  • Harries JR, Ritchie AIM (1985) Pore gas composition in waste-rock dumps undergoing pyrite oxidation. Soil Sci 140:143–152

    CAS  Google Scholar 

  • Harries JR, Ritchie AIM (1987) The effect of rehabilitation on the rate of oxidation of pyrite in a mine waste-rock dump. Environ Geochem Health 9:27–36

    CAS  Google Scholar 

  • Harrington JG (2001) US20016196765

    Google Scholar 

  • Harris DL, Lottermoser BG (2006a) Evaluation of phosphate fertilizers for ameliorating acid mine waste. Appl Geochem 21:1216–1225

    CAS  Google Scholar 

  • Harris DL, Lottermoser BG (2006b) Phosphate stabilization of polyminerallic mine wastes. Mineralog Mag 70:1–13

    CAS  Google Scholar 

  • Harris DL, Lottermoser BG, Duchesne J (2003) Ephemeral acid mine drainage at the Montalbion silver mine, north Queensland. Aust J Earth Sci 50:797–809

    CAS  Google Scholar 

  • Hesketh AH, Broadhurst JL, Harrison STL (2010) Mitigating the generation of acid mine drainage from copper sulfide tailings impoundments in perpetuity: a case study for an integrated management strategy. Mineral Eng 23:225–229

    CAS  Google Scholar 

  • Hodges G, Roberts DW, Marshall SJ, Dearden JC (2006) The aquatic toxicity of anionic surfactants to Dophnia magna—a comparative QSAR study of linear alkylbenzene sulphonates and ester sulphonates. Chemosphere 63:1443–1450

    CAS  Google Scholar 

  • Holmström H, Salmon UJ, Carlsson E, Petrov P, Öhlzander B (2001) Geochemical investigations of sulfide bearing tailings at Kristineberg, northern Sweden, a few years after remediation. Sci Total Environ 273:111–133

    Google Scholar 

  • Huang X, Evangelou VP (1994) Suppression of pyrite oxidation rate by phosphate addition. In: Alper CN, Blowes DW (eds) Environmental geochemistry of sulfide oxidation. American Chemical Society, Washington, DC, pp 562–573

    Google Scholar 

  • Huminicki DMC, Rimstidt JD (2009) Iron oxyhydroxide coating of pyrite for acid mine drainage control. Appl Geochem 24:1626–1634

    CAS  Google Scholar 

  • Humber AJ (1995) Separation of sulphide minerals from mill tailings, Sudbury 95, Conference on mining and the environment, Sudbury, Ontario, pp. 149–158

    Google Scholar 

  • Hurst S, Schneider P, Meinrath G (2002) Remediating 700 years of mining in saxony: a heritage from ore mining. Mine Water Environ 21:3–6

    Google Scholar 

  • Ingledew WJ (1982) Thiobacillus ferrooxidans the bioenergetics of an acidophilic chemolithotroph. Biochim Biophys Acta 683:89–117

    CAS  Google Scholar 

  • Jennings SR, Dollhopf DJ, Inskeep WP (2000) Acid production from sulfide minerals using hydrogen peroxide weathering. Appl Geochem 15:235–243

    CAS  Google Scholar 

  • Jha RKT (2010) Carrier micro-encapsulation using Si and catechol to suppress pyrite flotation and oxidation. Ph.D. thesis, Hokkaido University, Sapporo, Japan

    Google Scholar 

  • Ji SW, Cheong YW, Yim GJ, Bhattacharya J (2007) ARD generation and corrosion potential of exposed roadside rockmass at Boeun and Mujoo, South Korea. Environ Geol 52:1033–1043

    CAS  Google Scholar 

  • Ji MK, Gee ED, Yun HS, Lee WR, Park YT, Khan MA, Jeon BH, Choi J (2012) Inhibition of sulfide mineral oxidation by surface coating agents: Batch and field studies J Hazard Material 229–230: 298–306

    CAS  Google Scholar 

  • Jiang CL, Wang XH, Parekh BK (2000) Effect of sodium oleate on inhibiting pyrite oxidation. Int J Miner Process 58:305–318

    CAS  Google Scholar 

  • Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338:3–14

    CAS  Google Scholar 

  • Kapadia PC, Arnoid J, Marshal GP, Thompson JS (1999) Preventing acid rock drainage using Dupont’s surface passivation technology. In: Kosich D, Miller G (eds) Closure, remediation and management of precious metals heap leach facilities

    Google Scholar 

  • Kargbo D, Chatterjee S (2005) Stability of silicate coatings on pyrite surfaces in a low pH environment. J Environ Eng 131:1340–1349

    CAS  Google Scholar 

  • Kargbo DM, Fanning DS, Inyang HI, Duell RW (1993) The environmental significance of acid sulfate clays as waste covers. Environ Geol 22:218–226

    CAS  Google Scholar 

  • Kargbo DM, Atallah G, Chatterjee S (2004) Inhibition of pyrite oxidation by a phospholipids in the presence of silicate. Environ Sci Technol 38:3432–3441

    CAS  Google Scholar 

  • Khummalai N, Boonamnuayvitaya V (2005) Suppression of arsenopyrite surface oxidation by sol-­gel coatings. J Biosci Bioeng 99:277–284

    CAS  Google Scholar 

  • Kirk-Othmer (1984) Encyclopedia of Chem Technol, vol 24, 3rd edn, pp 645–661

    Google Scholar 

  • Kleinmann RLP (1989) Acid mine drainage in the United States: controlling the impact on streams and rivers. In: 4th world congress on the conservation of builts and natural environments. University of Toronto. pp 1–10

    Google Scholar 

  • Kleinmann RLP (1990) At-source of acid mine drainage. Mine Water Environ 9:85–96

    Google Scholar 

  • Kleinmann RLP (1998) Bactericidal control of acidic drainage. In: Brady KC, Smith MW, Schueck J (eds) Coal mine drainage prediction and pollution prevention in Pennsylvania, PA DEP, Harrisburg, PA, 15:1−6

    Google Scholar 

  • Kleinmann RLP (1999) Bactericidal control of acidic drainage. In: Coal mine drainage prediction and pollution prevention in Pennsylvania. The Pennsylvania Department of Environmental Protection, Chapter 15, pp 15-1 to 15-6 (http://www.dep.state.pa.us/dep/deputate/minres/districts/cmdp/main.htm)

  • Kleinmann RLP, Crerar DA (1979) Thiobacillus ferroxidans and the formation of acidity in simulated coal mine environments. Geomicrobiol J 1:373–388

    CAS  Google Scholar 

  • Kleinmann RLP, Erickson PM (1981) Field evaluation of a bactericidal treatment to control acid drainage. In: Graves DH (ed) Proceedings of the symposium on surface mining hydrology, sedimentology and reclamation. University of Kentucky, Lexington, KY, pp 325–329

    Google Scholar 

  • Kleinmann RLP, Erickson PM (1983) Control of acid mine drainage from coal refuse using anionic surfactants. Report of investigation No. 8847, U.S Bureau of Mines

    Google Scholar 

  • Kleinmann RLP, Crerar DA, Pacelli RP (1981) Biogeochemistry of acid mine drainage and a method to control acid formation. Mining Eng 33:300–305

    CAS  Google Scholar 

  • Lalvani SB, Deneve BA, Weston A (1990) Passivation of pyrite due to surface treatment. Fuel 69:1567–1569

    CAS  Google Scholar 

  • Lalvani SB, Deneve BA, Weston A (1991) Prevention of pyrite dissolution in acid media. Corrosion 47:55–61

    CAS  Google Scholar 

  • Lalvani SB, Zhang G, Lalvani LS (1996) Coal pyrite passivation due to humic acids and lignite treatment. Fuel Sci Technol Int 14:1291–1313

    CAS  Google Scholar 

  • Lan Y, Huang X, Deng B (2002) Suppression of pyrite oxidation by iron 8-hydroxyquinoline. Arch Environ Contam Toxicol 43:168–174

    CAS  Google Scholar 

  • Langworthy TA (1978) Microbial life in extreme pH values. In: Kuschner DJ (ed) Microbial life in extreme environments. Academic, New York, pp 279–315

    Google Scholar 

  • Lapakko KA (1994) Subaqueous disposal of mine waste: laboratory investigation. Bureau of Mines Special Publication, SP 06 A-94, pp 270–278

    Google Scholar 

  • Lattuada RM, Menezes CTB, Pavei PT, Peralba MCR, Dos Santos JHZ (2009) Determination of metals by total reflection X-ray fluorescence and evaluation of toxicity of a river impacted by coalmining in the south of Brazil. J Hazard Mater 163:531–537

    CAS  Google Scholar 

  • Lei L, Song C, Xie X, Wang F (2010) Acid mine drainage and heavy metal contamination in groundwater of metal sulfide mine at arid territory (BS mine, Western Australia). Trans Non Ferrous Met Soc China 20:1488–1493

    CAS  Google Scholar 

  • Leppinen JO, Salonsaari P, Palosaari V (1997) Flotation in acid mine drainage control: beneficiation of concentrate. Canadian Metallurgical Quarterly 36:225–230

    Google Scholar 

  • Lesage S, Xu H, Novakowshi KS, Brown S, Durham L (1995) Use of humic acids to enhance the removal of aromatic hydrocarbons from contaminated aquifers. Part II: pilot scale. In: Proceedings of the 5th annual symposium on groundwater and soil remediation. Toronto, ON, 2–6 Oct 1995

    Google Scholar 

  • Lin M, Seed L, Yetman D, Fyfe J, Chesworth W, Shelp G (2001) Electochemical cover technology to prevent the formation of acid mine drainage. In: Proceedings of the 25th annual British Columbia mine reclamation symposium in Campbell River, BC

    Google Scholar 

  • Lindgren P, Parnell J, Holm GN, Broman C (2011) A demonstration of an affinity between pyrite and organic matter in a hydrothermal setting. Geochemical Transact 12:3

    CAS  Google Scholar 

  • Liwarska BE, Miksch K, Malachowska JA, Kalka J (2005) Acute toxicity and genotoxicity of five selected anionic and nonionic surfactants. Chemosphere 58:1249–1253

    Google Scholar 

  • Lollar BS (2005) Environmental geochemistry. Elsevier Publisher, Oxford

    Google Scholar 

  • Loos MA, Bosch C, Mare J, Immelman E, Sanderson RD (1989) Evaluation of sodium lauryl sulfate, sodium benzoate and sorbic acid as inhibitors of acidification of South African coal waste. In: Groundwater and mining: proceedings of the 5th biennial symposium of the groundwater division of the geological survey of South Africa Randburg, Transvaal, Pretoria, Geological Society of South Africa, pp 193–200

    Google Scholar 

  • Lottermoser B (2007) Mine wastes characterization, treatment and environmental impacts, 2nd edn. Springer Publisher, Heidelberg

    Google Scholar 

  • Lusardi PJ, Erickson PM (1985) Assessment and reclamation of an abandoned acid-producing strip mine in northern Clarion County, Pennsylvania. In: Proceedings of the 1985 symposium surface mining hydrology, sedimentology, and reclamation, University of Kentucky, Lexington, KY, pp 313–321

    Google Scholar 

  • Luszckiewicz A, Sztaba KS (1995) Beneficiation of flotation tailing from polish copper sulfide ores 25(4):121–124

    Google Scholar 

  • Mallo SJ (2011) The menace of acid mine drainage: an impending challenge in the mining of Lafia-obi coal, Nigeria. Continental J Eng Sci 6:46–54

    Google Scholar 

  • Martin J, Fyfe J (2011) Innovative closure concepts for xstrata nickel onaping operations, presentation in Sudbury 2011, mining and the environment international conference V, 25–30 June 2011

    Google Scholar 

  • Matlock MM, Howerton BS, Henkee KR, Atwood DA (2001) Irreversible binding of mercury and lead from aqueous systems with a newly designed multi dentate ligand. J Hazard Mat B 84:73–82

    CAS  Google Scholar 

  • Matlock MM, Howerton BS, Atwood DA (2003) Covalent coating of coal refuses to inhibit leaching. Adv Environ Res 7:495–501

    CAS  Google Scholar 

  • Mauric A, Lottermoser BG (2011) Phosphate amendment of metalliferous waste rocks, Century Pb-Zn mine, Australia: laboratory and field trials. Appl Geochem 26:45–56

    CAS  Google Scholar 

  • McCloskey AL (2005) Prevention of acid mine drainage generation from open-pit highwalls—final report. Mine waste technology program activity III, project 26, EPA/600/R-05/060

    Google Scholar 

  • Miller G, Van Zyl D (2008) Personal communication

    Google Scholar 

  • Miller S, Smart R, Andrina J, Neale A, Richards D (2003) Evaluation of limestone covers and blends for long-term acid rock drainage control at the grasberg mine, papua province, Indonesia. In: Proceedings of 6th international conference on acid rock drainage (ICARD), July 12–18, Cairns, QLD, Australia, AusIMM, pp 133–141

    Google Scholar 

  • Miller S, Rusdinar Y, Smart R, Andrina J, Richards D (2006) Design and construction of limestone blended waste rock dumps—lessons learned from a 10-year study at Grasberg. In: Barnhisel RI (ed) Proceedings of 7th international conference on acid rock drainage (ICARD), St. Louis, MO, American Society of Mining and Reclamation, Lexington, KY, 26–30 Mar 2006

    Google Scholar 

  • Mine Environment Neutral Drainage Program (MEND) (2001) Prevention and control, vol 4. manual 5.4.2d. In: Tremblay GA, Hogan CM (eds) CANMET

    Google Scholar 

  • Mine Environment Neutral Drainage Program (MEND) (2010) Evaluation of the water quality ­benefits from encapsulation of acid-generating tailings by acid-consuming tailings—December

    Google Scholar 

  • Montero IC, Brimhall GH, Alpers CN, Swayze GA (2005) Characterization of waste rock associated with acid drainage at the Penn Mine, California, by ground-based visible to short-wave infrared reflectance spectroscopy assisted by digital mapping. Chem Geol 215:452–472

    Google Scholar 

  • Mosquera MJ, Pozo J, Esquivias L, Rivas T, Silva B (2002) Application of mercury porosimetry to the study of xerogels used at stone consolidants. J Non-Crystal Solids 311:185–194

    CAS  Google Scholar 

  • Mylona E, Xenidis A, Paspaliaris I (2000) Inhibition of acid generation from sulfidic wastes by the addition of small amounts of limestone. Mineral Eng 13:1161–1175

    CAS  Google Scholar 

  • Naicker K, Cukrowska E, McCarthy TS (2003) Acid mine drainage arising from gold mining activity in Johannesburg, South Africa and environs. Environ Pollut 122:29–40

    CAS  Google Scholar 

  • Nagase N, Asano S, Takano M, Takeda K, Heguri S, Idegami A (2010) Method for concentration of gold in copper sulfide minerals A US Patent No US8052774

    CAS  Google Scholar 

  • Nganje TN, Adamu CI, Ntekim EEU, Ugbaja AN, Neji P, Nfor EN (2010) Influence of mine drainage on water quality along River Nyaba in Enugu South-Eastern Nigeria. Afr J Environ Sci Technol 4:132–144

    CAS  Google Scholar 

  • Nicholson RV, Gillham RW, Reardon EJ (1988) Pyrite oxidation in carbonate– buffered solutions: 1. Experimental kinetics. Geochim Cosmochim Acta 52:1077–1085

    CAS  Google Scholar 

  • Nicholson RV, Gillham RW, Cherry JA, Reardon EJ (1989) Reduction of acid generation in mine tailings through use of moisture-retaining cover layers as oxygen barriers. Can Geotech J 26:1–8

    CAS  Google Scholar 

  • Nicholson RV, Gillham RW, Reardon EJ (1990) Pyrite oxidation in carbonate buffered solutions: 2. Rate control by oxide coatings. Geochim Cosmochim Acta 54:395–402

    CAS  Google Scholar 

  • Nieto JM, Sarmiento AM, Olías M, Canovas CR, Riba I, Kalman J, Delvalls TA (2007) Acid mine drainage pollution in the Tinto and Odiel rivers (Iberian Pyrite Belt, SW Spain) and bioavailability of the transported metals to the Huelva Estuary. Environ Int 33:445–455

    Google Scholar 

  • Nordstrom KD (1982) Aqueous pyrite oxidation and the consequent formation of secondary minerals. In: Kittrick JA, Fanning DS, Hossner LR (eds) Acid sulfate weathering pedogeochemistry and relationship to manipulation of soil materials. Soil Science Society, America Press, Madison, WI, pp 37–56

    Google Scholar 

  • Nordstrom DK, Alpers CN (1999) Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California. Proc Natl Acad Sci U S A 96:3455–3462

    CAS  Google Scholar 

  • Nordstrom DK, Alpers CN, Ptacek CJ, Blowes DW (2000) Negative pH and extremely acidic mine waters from Iron Mountain, California. Environ Sci Technol 34:254–258

    CAS  Google Scholar 

  • Nyavor K, Egiebor NO (1995) Control of pyrite oxidation by phosphate coating. Sci Total Environ 162:225–237

    CAS  Google Scholar 

  • Nyavor K, Egiebor NO, Fedorak PM (1996) Suppression of mineral pyrite oxidation by fatty acid amine treatment. Sci Total Environ 182:75–83

    CAS  Google Scholar 

  • Olson GJ, Clark TR, Mudder TI (2005) Acid rock drainage prevention and treatment with thiocyanate and phosphate containing materials. National Meetings of the American Society of Mining and Reclamation, Breckenridge, CO, June 19–23, 2005. Published by ASMR, Lexington, KY, pp 831–841

    Google Scholar 

  • Onysko SJ, Kleinmann RLP, Erickson PM (1984) Ferrous iron oxidation by Thiobacillus ferroxodans: inhibition with benzoic acid, sorbic acid, and sodium lauryl sulfate with benzoic acid, sorbic acid, and sodium lauryl sulfate. Appl Environ Microbiol 48:229–231

    CAS  Google Scholar 

  • Osterloh F, Saak W, Pohl S, Kroeckel M, Meier C, Trautwein AX (1998) Synthesis and characterization of neutral hexanuclear iron sulfur clusters containing stair-like [Fe6(u3-S)4(u2-SR)4] and nest-like [Fe6(u3-S)2(u2-S)2(u4-S)(u2-SR)4]. Inorg Chem 37:3581–3587

    CAS  Google Scholar 

  • Palamo A, Fernaddez-Jimenez A, Kovalchuk G, Ordonez LM, Naranjo MC (2007) Opc-fly ash cementitious systems: study of gel binder produced during alkaline hydration. J Mater Sci 42:2958–2966

    Google Scholar 

  • Pandey S, Yacob TW, Silverstein J, Rajaram H, Minchow K, Basta J (2011) Prevention of acid mine drainage through complexation of ferric iron by soluble microbial growth products. American Geophysical Union, Fall Meeting 2011, abstract #H43J-1370

    Google Scholar 

  • Parisi D, Horneman J, Rastogi V (1994) Use of bactericides to control acid mine drainage from surface operations. In: Proceedings of the international land reclamation and mine drainage conference, U.S. Bureau of Mines SP 06B-94, Pittsburgh, PA, pp 319–325

    Google Scholar 

  • Pedersen TF, Mueller B, Pelletier CA (1991) On the reactivity of submerged mine tailings in fjord and lake in British Columbia. In: Gadsby JW, Malick JA (eds) Acid mine drainage: designing for closure. Bi Tech Publishers, Vancouver, BC, pp 281–293

    Google Scholar 

  • Pedersen TF, Mueller B, McNee JJ, Pelletier CA (1993) The early diagenesis of submerged sulfide-­rich mine tailings in Anderson lake, Manitoba. Can J Earth Sci 30:1099–1109

    CAS  Google Scholar 

  • Pelo DS, Musu E, Cidu R, Frau F, Lattanzi P (2009) Release of toxic elements from rocks and mine wastes at the Furtei gold mine (Sardnia, Italy). J Geochem Explor 100:142–152

    Google Scholar 

  • Peppas A, Komnitsas K, Halikia I (2000) Use of organic covers for acid mine drainage control. Mineral Eng 13:563–574

    CAS  Google Scholar 

  • Pérez-López R, Jordi C, Miguel NJ, Carlos A (2005) The role of iron coating on the oxidative dissolution of a pyrite-rich sludge. In: Loredo J, Pendas F (eds) Ninth international mine water congress, pp 575−579

    Google Scholar 

  • Pérez-López R, Cama J, Nieto JM, Ayora C (2007a) The iron-coating role on the oxidation kinetics of a pyritic sludge doped with fly ash. Geochim Cosmochim Acta 71:1921–1934

    Google Scholar 

  • Pérez-López R, Nieto JM, Almodovar GR (2007b) Utilization of fly ash to improve the quality of the acid mine drainage generated by oxidation of a sulfide-rich mining waste: column experiments. Chemosphere 67:1637–1646

    Google Scholar 

  • Pérez-López R, Nieto JM, Alvared-valero AM, Almodovar GR (2007c) Mineralogy of the hardpan formation processes in the interface between sulfide-rich sludge and fly ash: applications for acid mine driange mitigation. Am Mineral 92:1966–1977

    Google Scholar 

  • Pond AP, White SA, Milczarek M, Thompson TL (2005) Accelerated weathering of biosolid-­amended copper mine tailings. J Environ Qual 34:1293–1301

    CAS  Google Scholar 

  • Rampe JJ, Runnells DD (1989) Contamination of water and sediment in a desert stream by metal from an abandoned gold mine and mill, Eureka District, Arizona, USA. Appl Geochem 4:445–454

    CAS  Google Scholar 

  • Rao AV, Kulkarni MM, Amalnerkar DP, Seth T (2003) Superhydrophobic silica aerogels based on methyltrimethoxysilane precursor. J Non-Crystal Solids 330:187–195

    CAS  Google Scholar 

  • Reardon EJ, Poscente PJ (1984) A study of gas compositions in sawmill waste deposits: an evaluation of the use of wood waste in close-out of pyrite tailings. Reclam Revegetation Res 3:109–128

    CAS  Google Scholar 

  • Ribet I, Ptacek CJ, Blowes DW, Jambor JL (1995) The potential for metal release by reductive dissolution of weathered mine tailings. J Contamin Hydrol 17:239–273

    CAS  Google Scholar 

  • Rich DH, Hutchison KR (1994) Coal refuse disposal using engineering design and lime chemistry. In: International land reclamation and mine drainage conference, 24–29 April 1994, USDI, Bureau of Mines SP 06A-94, Pittsburgh, PA, pp 392–399

    Google Scholar 

  • Ritsema CJ, Groenenberg JE (1993) Pyrite oxidation, carbonate weathering, and gypsum formation in a drained potential acid sulfate soil. Soil Sci Soc Am J 57:968–976

    CAS  Google Scholar 

  • Sahoo PK, Tripathy S, Equeendduin SM, Panigrahi MK (2012) Geochemical characteristics of coal mine discharge vis-à-vis behavior of rare earth elements at Jaintia hills coalfield, northeastern India. J Geochem Explor 112:235–243

    CAS  Google Scholar 

  • Sáinz A, Grande JA, De la Torre ML (2004) Characterization of heavy metal discharge into the Ria of Huelva. Environ Int 30:557–566

    Google Scholar 

  • Sand W, Jozsa PG, Kovacs ZM, Săsăran N, Schippers A (2007) Long-term evaluation of acid rock drainage mitigation measures in large lysimeters. J Geochem Explor 92:205–211

    CAS  Google Scholar 

  • Sasaki K, Tsunekawa M, Tanaka S, Konno H (1996) Supression of microbially mediated dissolution of pyrite by originally isolated fulvic acids and related compounds. Colloid Surface Physicochem Eng Aspect 119:241–253

    Google Scholar 

  • Satur J, Hiroyoshi N, Ito M, Tsunekawa M (2007b) Carrier-microencapsulation for suppressing floatability and oxidation of pyrite in copper mineral processing. In: Proceedings of the COM2007—46th conference of metallurgists hosting Cu 2007 the sixth international copper-­cobre conference, Toronto, Canada, Mineral Processing, vol 2, pp 25–30

    Google Scholar 

  • Satur J, Hiroyoshi N, Tsunekawa M, Mayumi I, Okamoto H (2007b) Carrier–microencapsulation for preventing pyrite oxidation. Int J Mineral Process 83:116–124

    CAS  Google Scholar 

  • Shang JQ, Wang HL, Kovac V, Fyfe J (2006) Site-specific study stabilization of acid generating mine tailing using coal fly ash. J Mater Civil Eng 18:140–150

    CAS  Google Scholar 

  • Sharma P (2010) Acid mine drainage (AMD) and its control. Lambert Academic Publishing, Germany

    Google Scholar 

  • Sheibach RB, Williams RE, Genes BR (1982) Controlling acid mine drainage from the Picher mining district Oklahoma, US. Int J Mine Water 1:45–52

    Google Scholar 

  • Shelp G, Chesworth W, Spiers G, Liu L (1995) Cathodic protection of a weathering orebody. In: Hynes TP, Blanchette MC (eds) Proceedings of Sudbury ‘95—mining and the environment, May 28–June 1, 1995, Sudbury, Ontario, Canada, vol 3, pp 1035–1042

    Google Scholar 

  • Shelph ML, Hyward GL, Seed LP, Shelp GS (2003) Electrochemical cover for the prevention of acid mine drainage: a laboratory test. In: Proceedings of the Sudbury 2003 mining and the environment conference, 25–28 May 2003, Sudbury, ON, Canada. Laurentian University, Sudbury, ON, Canada

    Google Scholar 

  • Silver M, Ritcey M (1985) Effects of iron-oxidizing bacteria and vegetation on acid generation in laboratory lysimeter tests on pyrite-containing uranium tailings. Hydrometallurgy 15:255–264

    CAS  Google Scholar 

  • Simms PH, Yanful EK, St-Arnaud L, Aube B (2000) A laboratory evaluation of metal release and transport in flooded pre-oxidized mine tailings. Appl Geochem 15:1245–1263

    CAS  Google Scholar 

  • Singer PC, Stumm W (1970) Acidic mine drainage—the rate-determining step. Science 167:1121–1123

    CAS  Google Scholar 

  • Sjoberg-Dobchuk B, Wilson GW, Aubertin M (2003) Evaluation of a single-layer desulfurised tailings cover. In: Proceedings of 6th international conference acid rock drainage (ICARD), Cairns, QLD, Australia, AusIMM, 14–17 July 2003

    Google Scholar 

  • Skousen J, Foreman J (2000) Water management techniques for acid mine drainage control. Green Lands 30(Winter)

    Google Scholar 

  • Sposito G (1984) The surface chemistry of soils. Oxford University Press, New York

    Google Scholar 

  • Swanson DA, Barbour SL, Wilson GW (1997) Dry-site versus wet-site cover design. In: Proceedings of the 4th international conference on acid rock drainage, May 30–June 6, Vancouver, BC, vol IV, pp 1595−1610

    Google Scholar 

  • Takashi N, Takeshi H, Masami Y, Masahiko B (2003) Preventing the escape of harmful elements using silica coating. J Japan Soc Eng Geol 43:390–395

    Google Scholar 

  • Tao X, Wu P, Tang C, Liu H, Sun J (2012) Effect of acid mine drainage on a karst basin: a case study on the high-As coal mining area in Guizhou province, China. Environ Earth Sci 65:631–638

    CAS  Google Scholar 

  • Tasse N, Germain D, Dufour C, Tremblay R (1997b) Hard-pan formation in the Canadian Malartic mine tailings: Implication for the reclamation of the abandoned impoundment. In: Proceeding of 4th international conference on acid rock drainage. Vancouver, BC, Canada, vol III, pp 1797−1812

    Google Scholar 

  • Tasse N, Germain D, Dufour C, Tremblay R (1997a) Organic-waste cover over the eastern mine tailing: beyond the oxygen barrier. In: 4th conference on acid rock drainage, May 31–June 6, Voncouver, BC. Secretariat CANMET, Ottawa, Canada, vol 4, pp 1627−1642

    Google Scholar 

  • Taylor JR, Guthrie B, Murphy NC, Waters J (2006) Alkalinity producing cover materials for providing sustained improvement in water quality from waste rock piles. In: Proceedings of the 7th international conference on acid rock drainage (ICARD), Mar 26–30, St. Louis, MO, American Society of Mining and Reclamation, Lexington, KY

    Google Scholar 

  • Thompson JS, Jerkins RE (1999) Evaluation of the DuPont Passivation technology at the home stake, mine, lead, South Dakota (No. DC-JL-99-5). Jackson Laboratory, El Du Pont de Nemours

    Google Scholar 

  • Timms GP, Bennett JW (2000) The effectiveness of covers at Rum Jungle after fifteen years. In: Proceedings 5th international conference on acid rock drainage. Society for mining, Metallurgy and Exploration, vol 2, pp 813−818

    CAS  Google Scholar 

  • Vandiviere MM, Evangelou VP (1998) Comparative testing between conventional and microencapsulation approaches in controlling pyrite oxidation. J Geochem Explor 64:161–176

    CAS  Google Scholar 

  • Vigneault B, Campbell PGC, Tessier A, Vitre RD (2001) Geochemical changes in sulfide mine tailings stored under a shallow water cover. Water Res 35:1066–1076

    CAS  Google Scholar 

  • Waddell RK, Parizek RR, Buss DR (1980) The application of limestone and lime dust in the abatement of acidic drainage in centre county, Pennsylvania. Final report of research project 73-9. Commonwealth of Pennsylvania, Department of Transportation, Office of Research and Special Studies, 245p

    Google Scholar 

  • Wang HL, Shang JQ, Kovac V, Ho KS (2006) Utilization of Atikokan coal fly ash in acid rock drainage from musselwhite mine tailings. Canadian Geotech J 43:229–243

    Google Scholar 

  • Watzlaf GR, Erickson PM (1986) Topical amendments of coal refuse: effect on pore gas composition and water quality. In: Proceedings of national symposium on mining, hydrology, sedimentology, and reclamation, Lexington, KY, 8–11 Dec 1986, pp 225−261

    Google Scholar 

  • Wu JT, Chiang YR, Huang WY, Jane WN (2006) Cytotoxic effects of free fatty acids on phytoplankton algae and cyanobacteria. Aquat Toxicol 80:338–345

    CAS  Google Scholar 

  • Xenidis A, Mylona E, Paspaliaris I (2002) Potential use of lignite fly ash for the control of acid generation from sulfidic wastes. Waste Manag 22:631–641

    CAS  Google Scholar 

  • Yanful EK (1993) Oxygen diffusion through soil cover on sulphidic mine tailings. J Geotech Eng 119:1207–1228

    Google Scholar 

  • Yanful E, Orlandea M (2000) Controlling acid drainage in a pyritic mine waste rock. Part II: geochemistry of drainage. Water Air Soil Pollut 124:259–284

    CAS  Google Scholar 

  • Yanful EK, Payant SC (1992) Evaluation of techniques for preventing acidic rock drainage. Milestone research report, MEND program, December

    Google Scholar 

  • Yanful JM, Verma A (1999) Oxidation of flooded mine tailings due to resuspension. Can Geotech J 36:826–845

    CAS  Google Scholar 

  • Yanful EK, Simms PH, Payant SC (1999) Soil cover for controlling acid generation in mine tailings: a laboratory evaluation of the physics and the geochemistry. Water Air Soil Pollut 114:347–375

    CAS  Google Scholar 

  • Yanful EK, Orlandea MP, Eliasziw M (2000) Controlling acid drainage in a pyrite mine waste rock. Part I: statistical analysis of drainage data. Water Air Soil Pollut 122:369–388

    CAS  Google Scholar 

  • Yanful EK, Oralandea MP (2000) Controlling acid driange in a pyritic mine waste rock. Part 2: geochemistry of drainage Water Air and Soil Pollution 124:259–284

    Google Scholar 

  • Yeheyis MB, Shang JQ, Yanful EK (2009) Long-term evaluation of coal fly ash and mine tailing co-placement: a site specific study. J Environ Manag 91:237–244

    Google Scholar 

  • Zaman KM, Chusuei C, Blue LY, Atwood DA (2007) Prevention of sulfide mineral leaching through covalent coating. Main Group Chem 6:167–184

    Google Scholar 

  • Zhang YL, Evangelou VP (1996) Influence of iron oxide forming conditions on pyrite oxidation. Soil Sci 161:852–864

    CAS  Google Scholar 

  • Zhang YL, Evangelou VP (1998) Formation of ferric hydroxide-silica coatings on pyrite and its oxidation behavior. Soil Sci 163:53–62

    CAS  Google Scholar 

  • Zhang X, Borda MJ, Schoonen MAA, Strongin DR (2003a) Adsorption of phospholipids on pyrite and their effect on surface oxidation. Langmuir 19:8787–8792

    CAS  Google Scholar 

  • Zhang X, Borda MJ, Schoonen MAA, Strongin DR (2003b) Pyrite oxidation inhibition by a cross-­linked lipid coating. Geochem Transact 4:8–11

    Google Scholar 

  • Zhang XV, Kendall TA, Hao J, Strongin DR, Schoonen MAA, Martin ST (2006) Physical structure of lipid layers of pyrite. Environ Sci Technol 40:1511–1515

    CAS  Google Scholar 

  • Zhuping Z, Hecai N, Gerke HH, Huttl RF (1998) Pyrite oxidation related to pyrite mine site spoils and its controls: a review. Chin J Geochem 17:159–169

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by BK21 Advanced Geo-Environment Research Team, Kunsan National University, Korea. We are grateful to the editor and two anonymous reviewers for their valuable comments and suggestions that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Prafulla Kumar Sahoo or Kangjoo Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sahoo, P.K., Kim, K., Equeenuddin, S.M., Powell, M.A. (2013). Current Approaches for Mitigating Acid Mine Drainage. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology Volume 226. Reviews of Environmental Contamination and Toxicology, vol 226. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6898-1_1

Download citation

Publish with us

Policies and ethics