Advertisement

Roles of EBNA1 at EBV Episomes

  • Lori Frappier
Chapter
Part of the SpringerBriefs in Cancer Research book series (BRIEFSCANCER, volume 3)

Abstract

EBV episomes undergo DNA replication once every cell cycle and therefore resemble the regulated

Keywords

Replication Fork Mitotic Chromosome Origin Recognition Complex Dyad Symmetry Chromosome Attachment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adams, A. (1987). Replication of latent Epstein-Barr virus genomes. Journal of Virology, 61, 1743–1746PubMedGoogle Scholar
  2. Altmann, M., Pich, D., Ruiss, R., Wang, J., Sugden, B., & Hammerschmidt, W. (2006). Transcriptional activation by EBV nuclear antigen 1 is essential for the expression of EBV’s transforming genes. Proceedings of National Academy of Sciences United States of America, 103, 14188–14193CrossRefGoogle Scholar
  3. Atanasiu, C., Deng, Z., Wiedmer, A., Norseen, J., & Lieberman, P. M. (2006). ORC binding to TRF2 stimulates OriP replication. EMBO Reports, 7, 716–721PubMedCrossRefGoogle Scholar
  4. Avolio-Hunter, T. M., & Frappier, L. (2003). EBNA1 efficiently assembles on chromatin containing the Epstein-Barr virus latent origin of replication. Virology, 315, 398–408PubMedCrossRefGoogle Scholar
  5. Avolio-Hunter, T. M., Lewis, P. N., & Frappier, L. (2001). Epstein-Barr nuclear antigen 1 binds and destbilizes nucleosomes at the viral origin of latent DNA replication. Nucleic Acids Research, 29, 3520–3528PubMedCrossRefGoogle Scholar
  6. Barbera, A. J., Chodaparambil, J. V., Kelley-Clarke, B., Joukov, V., Walter, J. C., Luger, K., et al. (2006). The nucleosomal surface as a docking station for Kaposi’s sarcoma herpesvirus LANA. Science, 311, 856–861PubMedCrossRefGoogle Scholar
  7. Bashaw, J. M., & Yates, J. L. (2001). Replication from oriP of Epstein-Barr virus requires exact spacing of two bound dimers of EBNA1 which bend DNA. Journal of Virology, 75, 10603–10611PubMedCrossRefGoogle Scholar
  8. Bochkarev, A., Barwell, J., Pfuetzner, R., Bochkareva, E., Frappier, L., & Edwards, A. M. (1996). Crystal structure of the DNA-binding domain of the Epstein-Barr virus origin binding protein, EBNA1, bound to DNA. Cell, 84, 791–800PubMedCrossRefGoogle Scholar
  9. Ceccarelli, D. F. J., & Frappier, L. (2000). Functional analyses of the EBNA1 origin DNA binding protein of Epstein-Barr virus. Journal of Virology, 74, 4939–4948PubMedCrossRefGoogle Scholar
  10. Chaudhuri, B., Xu, H., Todorov, I., Dutta, A., & Yates, J. L. (2001). Human DNA replication initiation factors, ORC and MCM, associate with oriP of Epstein-Barr virus. Proceedings of the National Academy of Sciences of the United States of America, 98, 10085–10089PubMedCrossRefGoogle Scholar
  11. Delecluse, H.-J., Bartnizke, S., Hammerschmidt, W., Bullerdiek, J., & Bornkamm, G. W. (1993). Episomal and integrated copies of Epstein-Barr virus coexist in Burkitt’s lymphoma cell lines. Journal of Virology, 67, 1292–1299PubMedGoogle Scholar
  12. Deng, Z., Atanasiu, C., Zhao, K., Marmorstein, R., Sbodio, J. I., Chi, N. W., et al. (2005). Inhibition of Epstein-Barr virus OriP function by tankyrase, a telomere-associated poly-ADP ribose polymerase that binds and modifies EBNA1. Journal of Virology, 79, 4640–4650PubMedCrossRefGoogle Scholar
  13. Deng, Z., Lezina, L., Chen, C.-J., Shtivelband, S., So, W., & Lieberman, P. M. (2002). Telomeric proteins regulate episomal maintenance of Epstein-Barr virus origin of plasmid replication. Molecular Cell, 9, 493–503PubMedCrossRefGoogle Scholar
  14. DePamphilis, M. L. (1993). Eukaryotic DNA replication: Anatomy of an origin. Annual Review of Biochemistry, 62, 29–63PubMedCrossRefGoogle Scholar
  15. Deutsch, M. J., Ott, E., Papior, P., & Schepers, A. (2010). The latent origin of replication of Epstein-Barr virus directs viral genomes to active regions of the nucleus. Journal of Virology, 84, 2533–2546PubMedCrossRefGoogle Scholar
  16. Dhar, V., & Schildkraut, C. L. (1991). Role of EBNA-1 in arresting replication forks at the Epstein-Barr virus oriP family of tandem repeats. Molecular and Cellular Biology, 11, 6268–6278PubMedGoogle Scholar
  17. Dhar, S. K., Yoshida, K., Machida, Y., Khaira, P., Chaudhuri, B., Wohlschlegel, J. A., et al. (2001). Replication from oriP of Epstein-Barr virus requires human ORC and is inhibited by geminin. Cell, 106, 287–296PubMedCrossRefGoogle Scholar
  18. Ermakova, O., Frappier, L., & Schildkraut, C. L. (1996). Role ot the EBNA-1 protein in pausing of replication forks in the Epstein-Barr virus genome. Journal of Biological Chemistry, 271, 33009–33017PubMedCrossRefGoogle Scholar
  19. Feeney, K. M., & Parish, J. L. (2009). Targeting mitotic chromosomes: A conserved mechanism to ensure viral genome persistence. Proceedings Biological Sciences, 276, 1535–1544CrossRefGoogle Scholar
  20. Feeney, K. M., Saade, A., Okrasa, K., & Parish, J. L. (2011). In vivo analysis of the cell cycle dependent association of the bovine papillomavirus E2 protein and ChlR1. Virology, 414, 1–9PubMedCrossRefGoogle Scholar
  21. Frappier, L., & O’Donnell, M. (1991). Overproduction, purification and characterization of EBNA1, the origin binding protein of Epstein-Barr virus. Journal of Biological Chemistry, 266, 7819–7826PubMedGoogle Scholar
  22. Gahn, T. A., & Schildkraut, C. L. (1989). The Epstein-Barr virus origin of plasmid replication, oriP, contains both the initiation and termination sites of DNA replication. Cell, 58, 527–535PubMedCrossRefGoogle Scholar
  23. Gahn, T., & Sugden, B. (1995). An EBNA1 dependent enhancer acts from a distance of 10 kilobase pairs to increase expression of the Epstien-Barr virus LMP gene. Journal of Virology, 69, 2633–2636PubMedGoogle Scholar
  24. Grogan, E. A., Summers, W. P., Dowling, S., Shedd, D., Gradoville, L., & Miller, G. (1983). Two Epstein-Barr viral nuclear neoantigens distinguished by gene transfer, serology and chromosome binding. Proceedings of the National Academy of Sciences of the United States of America, 80, 7650–7653PubMedCrossRefGoogle Scholar
  25. Harris, A., Young, B. D., & Griffin, B. E. (1985). Random association of Epstein-Barr virus genomes with host cell metaphase chromosomes in Burkitt’s lymphoma-derived cell lines. Journal of Virology, 56, 328–332PubMedGoogle Scholar
  26. Harrison, S., Fisenne, K., & Hearing, J. (1994a). Sequence requirements of the Epstein-Barr Virus latent origin of DNA replication. Journal of Virology, 68, 1913–1925PubMedGoogle Scholar
  27. Harrison, S., Fisenne, K., & Hearing, J. (1994b). Sequence requirements of the Epstein-Barr virus latent origin of DNA replication. Journal of Virology, 68, 1913–1925PubMedGoogle Scholar
  28. Haruki, H., Okuwaki, M., Miyagishi, M., Taira, K., & Nagata, K. (2006). Involvement of template-activating factor I/SET in transcription of adenovirus early genes as a positive-acting factor. Journal of Virology, 80, 794–801PubMedCrossRefGoogle Scholar
  29. Holowaty, M. N., Zeghouf, M., Wu, H., Tellam, J., Athanasopoulos, V., Greenblatt, J., et al. (2003). Protein profiling with Epstein-Barr nuclear antigen-1 reveals an interaction with the herpesvirus-associated ubiquitin-specific protease HAUSP/USP7. Journal of Biological Chemistry, 278, 29987–29994PubMedCrossRefGoogle Scholar
  30. Hung, S. C., Kang, M.-S., & Kieff, E. (2001). Maintenance of Epstein-Barr virus (EBV) oriP-based episomes requires EBV-encoded nuclear antigen-1 chromosome-binding domains, which can be replaced by high-mobility group-I or histone H1. Proceedings of the National Academy of Sciences of the United States of America, 98, 1865–1870PubMedCrossRefGoogle Scholar
  31. Ilves, I., Maemets, K., Silla, T., Janikson, K., & Ustav, M. (2006). Brd4 is involved in multiple processes of the bovine papillomavirus type 1 life cycle. Journal of Virology, 80, 3660–3665PubMedCrossRefGoogle Scholar
  32. Ito, S., Gotoh, E., Ozawa, S., & Yanagi, K. (2002). Epstein-Barr virus nuclear antigen-1 is highly colocalized with interphase chromatin and its newly replicated regions in particular. Journal of General Virology, 83, 2377–2383PubMedGoogle Scholar
  33. Ito, S., Ikeda, M., Kato, N., Matsumoto, A., Ishikawa, Y., Kumakubo, S., et al. (2000). Epstein-Barr virus nuclear antigen-1 binds to nuclear transporter karyopherin α1/NPI-1 in addition to karyopherin α2/Rch1. Virology, 266, 110–119PubMedCrossRefGoogle Scholar
  34. Jiang, J., Zhang, Y., Krainer, A. R., & Xu, R. M. (1999). Crystal structure of human p32, a doughnut-shaped acidic mitochondrial matrix protein. Proceedings of the National Academy of Sciences of the United States of America, 96, 3572–3577PubMedCrossRefGoogle Scholar
  35. Jourdan, N., Jobart-Malfait, A., Dos Reis, G., Quignon, F., Piolot, T., Klein, C., et al. (2012). Live-cell imaging reveals multiple interactions between Epstein-Barr virus nuclear antigen 1 and cellular chromatin during interphase and mitosis. Journal of Virology, 86, 5314–5329PubMedCrossRefGoogle Scholar
  36. Julien, M. D., Polonskaya, Z., & Hearing, J. (2004). Protein and sequence requirements for the recruitment of the human origin recognition complex to the latent cycle origin of DNA replication of Epstein-Barr virus oriP. Virology, 326, 317–328PubMedCrossRefGoogle Scholar
  37. Kanda, T., Kamiya, M., Maruo, S., Iwakiri, D., & Takada, K. (2007). Symmetrical localization of extrachromosomally replicating viral genomes on sister chromatids. Journal of Cell Science, 120, 1529–1539PubMedCrossRefGoogle Scholar
  38. Kanda, T., Otter, M., & Wahl, G. M. (2001). Coupling of mitotic chromosome tethering and replication competence in Epstein-Barr virus-based plasmids. Molecular and Cellular Biology, 21, 3576–3588PubMedCrossRefGoogle Scholar
  39. Kapoor, P., & Frappier, L. (2003). EBNA1 partitions Epstein-Barr virus plasmids in yeast by attaching to human EBNA1-binding protein 2 on mitotic chromosomes. Journal of Virology, 77, 6946–6956PubMedCrossRefGoogle Scholar
  40. Kapoor, P., Lavoie, B. D., & Frappier, L. (2005). EBP2 plays a key role in Epstein-Barr virus mitotic segregation and is regulated by aurora family kinases. Molecular and Cellular Biology, 25, 4934–4945PubMedCrossRefGoogle Scholar
  41. Kapoor, P., Shire, K., & Frappier, L. (2001). Reconstitution of Epstein-Barr virus-based plasmid partitioning in budding yeast. EMBO Journal, 20, 222–230PubMedCrossRefGoogle Scholar
  42. Kawase, H., Okuwaki, M., Miyaji, M., Ohba, R., Handa, H., Ishimi, Y., et al. (1996). NAP-1 is a functional homologue of TAF-I that is required for replication and transcription of the adenovirus genome in a chromatin-like structure. Genes to Cells, 1, 1045–1056PubMedCrossRefGoogle Scholar
  43. Kennedy, G., & Sugden, B. (2003). EBNA-1, a bifunctional transcriptional activator. Molecular and Cellular Biology, 23, 6901–6908PubMedCrossRefGoogle Scholar
  44. Kim, A. L., Maher, M., Hayman, J. B., Ozer, J., Zerby, D., Yates, J. L., et al. (1997). An imperfect correlation between DNA replication activity of Epstein-Barr virus nuclear antigen 1 (EBNA1) and binding to the nuclear import receptor, Rch1/importin α. Virology, 239, 340–351PubMedCrossRefGoogle Scholar
  45. Kirchmaier, A. L., & Sugden, B. (1997). Dominant-negative inhibitors of EBNA1 of Epstein-Barr virus. Journal of Virology, 71, 1766–1775PubMedGoogle Scholar
  46. Koons, M. D., Van Scoy, S., & Hearing, J. (2001). The replicator of the Epstein-Barr virus latent cycle origin of DNA replication, oriP, is composed of multiple functional elements. Journal of Virology, 75, 10582–10592PubMedCrossRefGoogle Scholar
  47. Krithivas, A., Fujimuro, M., Weidner, M., Young, D. B., & Hayward, S. D. (2002). Protein interactions targeting the latency-associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus to cell chromosomes. Journal of Virology, 76, 11596–11604PubMedCrossRefGoogle Scholar
  48. Krysan, P. J., Haase, S. B., & Calos, M. P. (1989). Isolation of human sequences that replicate autonomously in human cells. Molecular and Cellular Biology, 9, 1026–1033PubMedGoogle Scholar
  49. Kutney, S. N., Hong, R., Macfarlan, T., & Chakravarti, D. (2004). A signaling role of histone-binding proteins and INHAT subunits pp 32 and Set/TAF-Ibeta in integrating chromatin hypoacetylation and transcriptional repression. Journal of Biological Chemistry, 279, 30850–30855PubMedCrossRefGoogle Scholar
  50. Laine, A., & Frappier, L. (1995). Identification of Epstein-Barr nuclear antigen 1 protein domains that direct interactions at a distance between DNA-bound proteins. Journal of Biological Chemistry, 270, 30914–30918PubMedCrossRefGoogle Scholar
  51. Lee, M. A., Diamond, M. E., & Yates, J. L. (1999). Genetic evidence that EBNA-1 is needed for efficient, stable latent infection by Epstein-Barr virus. Journal of Virology, 73, 2974–2982PubMedGoogle Scholar
  52. Lin, A., Wang, S., Nguyen, T., Shire, K., & Frappier, L. (2008). The EBNA1 protein of Epstein-Barr virus functionally interacts with Brd4. Journal of Virology, 82, 12009–12019PubMedCrossRefGoogle Scholar
  53. Lindner, S. E., Zeller, K., Schepers, A., & Sugden, B. (2008). The affinity of EBNA1 for its origin of DNA synthesis is a determinant of the origin’s replicative efficiency. Journal of Virology, 82, 5693–5702PubMedCrossRefGoogle Scholar
  54. Little, R. D., & Schildkraut, C. L. (1995). Initiation of latent DNA replicatoon in the Epstein-Barr virus genome can occur at sites other than the genetically defined origin. Molecular and Cellular Biology, 15, 2893–2903PubMedGoogle Scholar
  55. Lupton, S., & Levine, A. J. (1985). Mapping of genetic elements of Epstein-Barr virus that facilitate extrachromosomal persistence of Epstein-Barr virus-derived plasmids in human cells. Molecular and Cellular Biology, 5, 2533–2542PubMedGoogle Scholar
  56. Mackey, D., & Sugden, B. (1999). The linking regions of EBNA1 are essential for its support of replication and transcription. Molecular and Cellular Biology, 19, 3349–3359PubMedGoogle Scholar
  57. Marechal, V., Dehee, A., Chikhi-Brachet, R., Piolot, T., Coppey-Moisan, M., & Nicolas, J. (1999). Mapping EBNA1 domains involved in binding to metaphase chromosomes. Journal of Virology, 73, 4385–4392PubMedGoogle Scholar
  58. Matsumoto, K., Nagata, K., Ui, M., & Hanaoka, F. (1993). Template activating factor I, a novel host factor required to stimulate the adenovirus core DNA replication. Journal of Biological Chemistry, 268, 10582–10587PubMedGoogle Scholar
  59. Matsumoto, K., Okuwaki, M., Kawase, H., Handa, H., Hanaoka, F., & Nagata, K. (1995). Stimulation of DNA transcription by the replication factor from the adenovirus genome in a chromatin-like structure. Journal of Biological Chemistry, 270, 9645–9650PubMedCrossRefGoogle Scholar
  60. McPhillips, M. G., Oliveira, J. G., Spindler, J. E., Mitra, R., & McBride, A. A. (2006). Brd4 is required for E2-mediated transcriptional activation but not genome partitioning of all papillomaviruses. Journal of Virology, 80, 9530–9543PubMedCrossRefGoogle Scholar
  61. Mendez, J., & Stillman, B. (2000). Chromatin association of human origin recognition coplex, cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Molecular and Cellular Biology, 20, 8602–8612PubMedCrossRefGoogle Scholar
  62. Miyamoto, S., Suzuki, T., Muto, S., Aizawa, K., Kimura, A., Mizuno, Y., et al. (2003). Positive and negative regulation of the cardiovascular transcription factor KLF5 by p300 and the oncogenic regulator SET through interaction and acetylation on the DNA-binding domain. Molecular and Cellular Biology, 23, 8528–8541PubMedCrossRefGoogle Scholar
  63. Moriyama, K., Yoshizawa-Sugata, N., Obuse, C., Tsurimoto, T., & Masai, H. (2012). Epstein-Barr nuclear antigen 1 (EBNA1)-dependent recruitment of origin recognition complex (Orc) on oriP of Epstein-Barr virus with purified proteins: Stimulation by Cdc6 through its direct interaction with EBNA1. Journal of Biological Chemistry, 287, 23977–23994PubMedCrossRefGoogle Scholar
  64. Murakami, M., Lan, K., Subramanian, C., & Robertson, E. S. (2005). Epstein-Barr virus nuclear antigen 1 interacts with Nm23-H1 in lymphoblastoid cell lines and inhibits its ability to suppress cell migration. Journal of Virology, 79, 1559–1568PubMedCrossRefGoogle Scholar
  65. Nagata, K., Kawase, H., Handa, H., Yano, K., Yamasaki, M., Ishimi, Y., et al. (1995). Replication factor encoded by a putative oncogene, set, associated with myeloid leukemogenesis. Proceedings of the National Academy of Sciences of the United States of America, 92, 4279–4283PubMedCrossRefGoogle Scholar
  66. Nanbo, A., Sugden, A., & Sugden, B. (2007). The coupling of synthesis and partitioning of EBV’s plasmid replicon is revealed in live cells. EMBO Journal, 26, 4252–4262PubMedCrossRefGoogle Scholar
  67. Nayyar, V. K., Shire, K., & Frappier, L. (2009). Mitotic chromosome interactions of Epstein-Barr nuclear antigen 1 (EBNA1) and human EBNA1-binding protein 2 (EBP2). Journal of Cell Science, 122, 4341–4350PubMedCrossRefGoogle Scholar
  68. Niller, H. H., Glaser, G., Knuchel, R., & Wolf, H. (1995). Nucleoprotein complexes and DNA 5’-ends at oriP of Epstein-Barr virus. Journal of Biological Chemistry, 270, 12864–12868PubMedCrossRefGoogle Scholar
  69. Norio, P., & Schildkraut, C. L. (2001). Visualization of DNA replication on individual Epstein-Barr virus episomes. Science, 294, 2361–2364PubMedCrossRefGoogle Scholar
  70. Norio, P., & Schildkraut, C. L. (2004). Plasticity of DNA replication initiation in Epstein-Barr virus episomes. PLoS Biology, 2, e152PubMedCrossRefGoogle Scholar
  71. Norio, P., Schildkraut, C. L., & Yates, J. L. (2000). Initiation of DNA replication within oriP is dispensable for stable replication of the latent Epstein-Barr virus chromosome after infection of established cell lines. Journal of Virology, 74, 8563–8574PubMedCrossRefGoogle Scholar
  72. Norseen, J., Johnson, F. B., & Lieberman, P. M. (2009). Role for G-quadruplex RNA binding by Epstein-Barr virus nuclear antigen 1 in DNA replication and metaphase chromosome attachment. Journal of Virology, 83, 10336–10346PubMedCrossRefGoogle Scholar
  73. Norseen, J., Thomae, A., Sridharan, V., Aiyar, A., Schepers, A., & Lieberman, P. M. (2008). RNA-dependent recruitment of the origin recognition complex. EMBO Journal, 27, 3024–3035.PubMedCrossRefGoogle Scholar
  74. Parish, J. L., Bean, A. M., Park, R. B., & Androphy, E. J. (2006). ChlR1 is required for loading papillomavirus E2 onto mitotic chromosomes and viral genome maintenance. Molecular Cell, 24, 867–876PubMedCrossRefGoogle Scholar
  75. Park, Y. J., & Luger, K. (2006). Structure and function of nucleosome assembly proteins. Biochemistry and Cell Biology, 84, 549–558PubMedCrossRefGoogle Scholar
  76. Petti, L., Sample, C., & Kieff, E. (1990). Subnuclear localization and phosphorylation or Epstein-Barr virus latent infection nuclear proteins. Virology, 176, 563–574PubMedCrossRefGoogle Scholar
  77. Polvino-Bodnar, M., & Schaffer, P. A. (1992). DNA binding activity is required for EBNA1-dependent transcriptional activation and DNA replication. Virology, 187, 591–603PubMedCrossRefGoogle Scholar
  78. Rawlins, D. R., Milman, G., Hayward, S. D., & Hayward, G. S. (1985). Sequence-specific DNA binding of the Epstein-Barr virus nuclear antigen (EBNA1) to clustered sites in the plasmid maintenance region. Cell, 42, 859–868PubMedCrossRefGoogle Scholar
  79. Rehtanz, M., Schmidt, H. M., Warthorst, U., & Steger, G. (2004). Direct interaction between nucleosome assembly protein 1 and the papillomavirus E2 proteins involved in activation of transcription. Molecular and Cellular Biology, 24, 2153–2168PubMedCrossRefGoogle Scholar
  80. Reisman, D., & Sugden, B. (1986). trans Activation of an Epstein-Barr viral transcriptional enhancer by the Epstein-Barr viral nuclear antigen 1. Molecular and Cellular Biology, 6, 3838–3846PubMedGoogle Scholar
  81. Reisman, D., Yates, J., & Sugden, B. (1985). A putative origin of replication of plasmids derived from Epstein-Barr virus is composed of two cis-acting components. Molecular and Cellular Biology, 5, 1822–1832PubMedGoogle Scholar
  82. Rialland, M., Sola, F., & Santocanale, C. (2002). Essential role of human CDT1 in DNA replication and chromatin licensing. Journal of Cell Science, 115, 1435–1440PubMedGoogle Scholar
  83. Ritzi, M., Tillack, K., Gerhardt, J., Ott, E., Humme, S., Kremmer, E., et al. (2003). Complex protein-DNA dynamics at the latent origin of DNA replication of Epstein-Barr virus. Journal of Cell Science, 116, 3971–3984PubMedCrossRefGoogle Scholar
  84. Sarkari, F., Sanchez-Alcaraz, T., Wang, S., Holowaty, M. N., Sheng, Y., & Frappier, L. (2009). EBNA1-mediated recruitment of a histone H2B deubiquitylating complex to the Epstein-Barr virus latent origin of DNA replication. PLoS Pathogens, 5, e1000624PubMedCrossRefGoogle Scholar
  85. Schepers, A., Ritzi, M., Bousset, K., Kremmer, E., Yates, J. L., Harwood, J., et al. (2001). Human origin recognition complex binds to the region of the latent origin of DNA replication of Epstein-Barr virus. EMBO Journal, 20, 4588–4602PubMedCrossRefGoogle Scholar
  86. Schweiger, M. R., You, J., & Howley, P. M. (2006). Bromodomain protein 4 mediates the papillomavirus E2 transcriptional activation function. Journal of Virology, 80, 4276–4285PubMedCrossRefGoogle Scholar
  87. Sears, J., Kolman, J., Wahl, G. M., & Aiyar, A. (2003). Metaphase chromosome tethering is necessary for the DNA synthesis and maintenance of oriP plasmids but is insufficient for transcription activation by Epstein-Barr nuclear antigen 1. Journal of Virology, 77, 11767–11780PubMedCrossRefGoogle Scholar
  88. Sears, J., Ujihara, M., Wong, S., Ott, C., Middeldorp, J., & Aiyar, A. (2004). The amino terminus of Epstein-Barr Virus (EBV) nuclear antigen 1 contains AT hooks that facilitate the replication and partitioning of latent EBV genomes by tethering them to cellular chromosomes. Journal of Virology, 78, 11487–11505PubMedCrossRefGoogle Scholar
  89. Seo, S.-B., McNamara, P., Heo, S., Turner, A., Lane, W. S., & Chakravarti, D. (2001). Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the Set oncoprotein. Cell, 104, 119–130PubMedCrossRefGoogle Scholar
  90. Shaw, J., Levinger, L., & Carter, C. (1979). Nucleosomal structure of Epstein-Barr virus DNA in transformed cell lines. Journal of Virology, 29, 657–665PubMedGoogle Scholar
  91. Shikama, N., Chan, H. M., Krstic-Demonacos, M., Smith, L., Lee, C. W., Cairns, W., et al. (2000). Functional interaction between nucleosome assembly proteins and p300/CREB-binding protein family coactivators. Molecular and Cellular Biology, 20, 8933–8943PubMedCrossRefGoogle Scholar
  92. Shirakata, M., Imadome, K.-I., Okazaki, K., & Hirai, K. (2001). Activation of TRAF5 and TRAF6 signal cascades negatively regulates the latent replication origin of Epstein-Barr virus through p38 mitogen-activated protein kinase. Journal of Virology, 75, 5059–5068PubMedCrossRefGoogle Scholar
  93. Shire, K., Ceccarelli, D. F. J., Avolio-Hunter, T. M., & Frappier, L. (1999). EBP2, a human protein that interacts with sequences of the Epstein-Barr nuclear antigen 1 important for plasmid maintenance. Journal of Virology, 73, 2587–2595PubMedGoogle Scholar
  94. Shire, K., Kapoor, P., Jiang, K., Hing, M. N., Sivachandran, N., Nguyen, T., et al. (2006). Regulation of the EBNA1 Epstein-Barr virus protein by serine phosphorylation and arginine methylation. Journal of Virology, 80, 5261–5272PubMedCrossRefGoogle Scholar
  95. Simpson, K., McGuigan, A., & Huxley, C. (1996). Stable episomal maintenance of yeast artificial chromosomes in human cells. Molecular and Cellular Biology, 16, 5117–5126PubMedGoogle Scholar
  96. Snudden, D.K., Hearing, J., Smith, P.R., Grasser, F.A., & Griffin, B.E. (1994). EBNA1, the major nuclear antigen of Epstein-Barr virus, resenbles ‘RGG’ RNA binding proteins. EMBO Journal, 13, 4840-4848-4847Google Scholar
  97. Sternas, L., Middleton, T., & Sugden, B. (1990). The average number of molecules of Epstein-Barr nuclear antigen 1 per cell does not correlate with the average number of Epstein-Barr virus (EBV) DNA molecules per cell among different clones of EBV-immortalized cells. Journal of Virology, 64, 2407–2410PubMedGoogle Scholar
  98. Sugden, B., & Warren, N. (1989). A promoter of Epstein-Barr virus that can function during latent infection can be transactivated by EBNA-1, a viral protein required for viral DNA replication during latent infection. Journal of Virology, 63, 2644–2649PubMedGoogle Scholar
  99. Van Scoy, S., Watakabe, I., Krainer, A. R., & Hearing, J. (2000). Human p32: A coactivator for Epstein-Barr virus nuclear antigen-1-mediated transcriptional activation and possible role in viral latent cycle DNA replication. Virology, 275, 145–157PubMedCrossRefGoogle Scholar
  100. Wang, Y., Finan, J. E., Middeldorp, J. M., & Hayward, S. D. (1997). P32/TAP, a cellular protein that interacts with EBNA-1 of Epstein-Barr virus. Virology, 236, 18–29PubMedCrossRefGoogle Scholar
  101. Wang, S., & Frappier, L. (2009). Nucleosome assembly proteins bind to Epstein-Barr virus nuclear antigen 1 and affect its functions in DNA replication and transcriptional activation. Journal of Virology, 83, 11704–11714PubMedCrossRefGoogle Scholar
  102. Wu, H., Ceccarelli, D. F. J., & Frappier, L. (2000). The DNA segregation mechanism of the Epstein-Barr virus EBNA1 protein. EMBO Reports, 1, 140–144PubMedCrossRefGoogle Scholar
  103. Wu, S. Y., & Chiang, C. M. (2007). The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation. Journal of Biological Chemistry, 282, 13141–13145PubMedCrossRefGoogle Scholar
  104. Wu, H., Kapoor, P., & Frappier, L. (2002a). Separation of the DNA replication, segregation and transcriptional activation functions of Epstein-Barr nuclear antigen 1. Journal of Virology, 76, 2480–2490PubMedCrossRefGoogle Scholar
  105. Wu, H., Kapoor, P., & Frappier, L. (2002b). Separation of the DNA replication, segregation, and transcriptional activation functions of Epstein-Barr nuclear antigen 1. Journal of Virology, 76, 2480–2490PubMedCrossRefGoogle Scholar
  106. Wysokenski, D. A., & Yates, J. L. (1989). Multiple EBNA1-binding sites are required to form an EBNA1-dependent enhancer and to activate a minimal replicative origin within oriP of Epstein-Barr virus. Journal of Virology, 63, 2657–2666PubMedGoogle Scholar
  107. Yates, J. L., & Camiolo, S. M. (1988). Dissection of DNA replication and enhancer activation functions of Epstein-Barr virus nuclear antigen 1. Cancer Cells, 6, 197–205Google Scholar
  108. Yates, J. L., Camiolo, S. M., & Bashaw, J. M. (2000). The minimal replicator of Epstein-Barr virus oriP. Journal of Virology, 74, 4512–4522PubMedCrossRefGoogle Scholar
  109. Yates, J. L., & Guan, N. (1991). Epstein-Barr virus-derived plasmids replicate only once per cell cycle and are not amplified after entry into cells. Journal of Virology, 65, 483–488PubMedGoogle Scholar
  110. Yates, J. L., Warren, N., Reisman, D., & Sugden, B. (1984). A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proceedings of the National Academy of Sciences of the United States of America, 81, 3806–3810PubMedCrossRefGoogle Scholar
  111. Yates, J. L., Warren, N., & Sugden, B. (1985). Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature, 313, 812–815PubMedCrossRefGoogle Scholar
  112. You, J. (2010). Papillomavirus interaction with cellular chromatin. Biochimica et Biophysica Acta, 1799, 192–199PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.University of TorontoTorontoCanada

Personalised recommendations