Skip to main content

Roles of EBNA1 at EBV Episomes

  • Chapter
  • First Online:
  • 608 Accesses

Part of the book series: SpringerBriefs in Cancer Research ((BRIEFSCANCER,volume 3))

Abstract

EBV episomes undergo DNA replication once every cell cycle and therefore resemble the regulated

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams, A. (1987). Replication of latent Epstein-Barr virus genomes. Journal of Virology, 61, 1743–1746

    PubMed  CAS  Google Scholar 

  • Altmann, M., Pich, D., Ruiss, R., Wang, J., Sugden, B., & Hammerschmidt, W. (2006). Transcriptional activation by EBV nuclear antigen 1 is essential for the expression of EBV’s transforming genes. Proceedings of National Academy of Sciences United States of America, 103, 14188–14193

    Article  CAS  Google Scholar 

  • Atanasiu, C., Deng, Z., Wiedmer, A., Norseen, J., & Lieberman, P. M. (2006). ORC binding to TRF2 stimulates OriP replication. EMBO Reports, 7, 716–721

    Article  PubMed  CAS  Google Scholar 

  • Avolio-Hunter, T. M., & Frappier, L. (2003). EBNA1 efficiently assembles on chromatin containing the Epstein-Barr virus latent origin of replication. Virology, 315, 398–408

    Article  PubMed  CAS  Google Scholar 

  • Avolio-Hunter, T. M., Lewis, P. N., & Frappier, L. (2001). Epstein-Barr nuclear antigen 1 binds and destbilizes nucleosomes at the viral origin of latent DNA replication. Nucleic Acids Research, 29, 3520–3528

    Article  PubMed  CAS  Google Scholar 

  • Barbera, A. J., Chodaparambil, J. V., Kelley-Clarke, B., Joukov, V., Walter, J. C., Luger, K., et al. (2006). The nucleosomal surface as a docking station for Kaposi’s sarcoma herpesvirus LANA. Science, 311, 856–861

    Article  PubMed  CAS  Google Scholar 

  • Bashaw, J. M., & Yates, J. L. (2001). Replication from oriP of Epstein-Barr virus requires exact spacing of two bound dimers of EBNA1 which bend DNA. Journal of Virology, 75, 10603–10611

    Article  PubMed  CAS  Google Scholar 

  • Bochkarev, A., Barwell, J., Pfuetzner, R., Bochkareva, E., Frappier, L., & Edwards, A. M. (1996). Crystal structure of the DNA-binding domain of the Epstein-Barr virus origin binding protein, EBNA1, bound to DNA. Cell, 84, 791–800

    Article  PubMed  CAS  Google Scholar 

  • Ceccarelli, D. F. J., & Frappier, L. (2000). Functional analyses of the EBNA1 origin DNA binding protein of Epstein-Barr virus. Journal of Virology, 74, 4939–4948

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri, B., Xu, H., Todorov, I., Dutta, A., & Yates, J. L. (2001). Human DNA replication initiation factors, ORC and MCM, associate with oriP of Epstein-Barr virus. Proceedings of the National Academy of Sciences of the United States of America, 98, 10085–10089

    Article  PubMed  CAS  Google Scholar 

  • Delecluse, H.-J., Bartnizke, S., Hammerschmidt, W., Bullerdiek, J., & Bornkamm, G. W. (1993). Episomal and integrated copies of Epstein-Barr virus coexist in Burkitt’s lymphoma cell lines. Journal of Virology, 67, 1292–1299

    PubMed  CAS  Google Scholar 

  • Deng, Z., Atanasiu, C., Zhao, K., Marmorstein, R., Sbodio, J. I., Chi, N. W., et al. (2005). Inhibition of Epstein-Barr virus OriP function by tankyrase, a telomere-associated poly-ADP ribose polymerase that binds and modifies EBNA1. Journal of Virology, 79, 4640–4650

    Article  PubMed  CAS  Google Scholar 

  • Deng, Z., Lezina, L., Chen, C.-J., Shtivelband, S., So, W., & Lieberman, P. M. (2002). Telomeric proteins regulate episomal maintenance of Epstein-Barr virus origin of plasmid replication. Molecular Cell, 9, 493–503

    Article  PubMed  CAS  Google Scholar 

  • DePamphilis, M. L. (1993). Eukaryotic DNA replication: Anatomy of an origin. Annual Review of Biochemistry, 62, 29–63

    Article  PubMed  CAS  Google Scholar 

  • Deutsch, M. J., Ott, E., Papior, P., & Schepers, A. (2010). The latent origin of replication of Epstein-Barr virus directs viral genomes to active regions of the nucleus. Journal of Virology, 84, 2533–2546

    Article  PubMed  CAS  Google Scholar 

  • Dhar, V., & Schildkraut, C. L. (1991). Role of EBNA-1 in arresting replication forks at the Epstein-Barr virus oriP family of tandem repeats. Molecular and Cellular Biology, 11, 6268–6278

    PubMed  CAS  Google Scholar 

  • Dhar, S. K., Yoshida, K., Machida, Y., Khaira, P., Chaudhuri, B., Wohlschlegel, J. A., et al. (2001). Replication from oriP of Epstein-Barr virus requires human ORC and is inhibited by geminin. Cell, 106, 287–296

    Article  PubMed  CAS  Google Scholar 

  • Ermakova, O., Frappier, L., & Schildkraut, C. L. (1996). Role ot the EBNA-1 protein in pausing of replication forks in the Epstein-Barr virus genome. Journal of Biological Chemistry, 271, 33009–33017

    Article  PubMed  CAS  Google Scholar 

  • Feeney, K. M., & Parish, J. L. (2009). Targeting mitotic chromosomes: A conserved mechanism to ensure viral genome persistence. Proceedings Biological Sciences, 276, 1535–1544

    Article  CAS  Google Scholar 

  • Feeney, K. M., Saade, A., Okrasa, K., & Parish, J. L. (2011). In vivo analysis of the cell cycle dependent association of the bovine papillomavirus E2 protein and ChlR1. Virology, 414, 1–9

    Article  PubMed  CAS  Google Scholar 

  • Frappier, L., & O’Donnell, M. (1991). Overproduction, purification and characterization of EBNA1, the origin binding protein of Epstein-Barr virus. Journal of Biological Chemistry, 266, 7819–7826

    PubMed  CAS  Google Scholar 

  • Gahn, T. A., & Schildkraut, C. L. (1989). The Epstein-Barr virus origin of plasmid replication, oriP, contains both the initiation and termination sites of DNA replication. Cell, 58, 527–535

    Article  PubMed  CAS  Google Scholar 

  • Gahn, T., & Sugden, B. (1995). An EBNA1 dependent enhancer acts from a distance of 10 kilobase pairs to increase expression of the Epstien-Barr virus LMP gene. Journal of Virology, 69, 2633–2636

    PubMed  CAS  Google Scholar 

  • Grogan, E. A., Summers, W. P., Dowling, S., Shedd, D., Gradoville, L., & Miller, G. (1983). Two Epstein-Barr viral nuclear neoantigens distinguished by gene transfer, serology and chromosome binding. Proceedings of the National Academy of Sciences of the United States of America, 80, 7650–7653

    Article  PubMed  CAS  Google Scholar 

  • Harris, A., Young, B. D., & Griffin, B. E. (1985). Random association of Epstein-Barr virus genomes with host cell metaphase chromosomes in Burkitt’s lymphoma-derived cell lines. Journal of Virology, 56, 328–332

    PubMed  CAS  Google Scholar 

  • Harrison, S., Fisenne, K., & Hearing, J. (1994a). Sequence requirements of the Epstein-Barr Virus latent origin of DNA replication. Journal of Virology, 68, 1913–1925

    PubMed  CAS  Google Scholar 

  • Harrison, S., Fisenne, K., & Hearing, J. (1994b). Sequence requirements of the Epstein-Barr virus latent origin of DNA replication. Journal of Virology, 68, 1913–1925

    PubMed  CAS  Google Scholar 

  • Haruki, H., Okuwaki, M., Miyagishi, M., Taira, K., & Nagata, K. (2006). Involvement of template-activating factor I/SET in transcription of adenovirus early genes as a positive-acting factor. Journal of Virology, 80, 794–801

    Article  PubMed  CAS  Google Scholar 

  • Holowaty, M. N., Zeghouf, M., Wu, H., Tellam, J., Athanasopoulos, V., Greenblatt, J., et al. (2003). Protein profiling with Epstein-Barr nuclear antigen-1 reveals an interaction with the herpesvirus-associated ubiquitin-specific protease HAUSP/USP7. Journal of Biological Chemistry, 278, 29987–29994

    Article  PubMed  CAS  Google Scholar 

  • Hung, S. C., Kang, M.-S., & Kieff, E. (2001). Maintenance of Epstein-Barr virus (EBV) oriP-based episomes requires EBV-encoded nuclear antigen-1 chromosome-binding domains, which can be replaced by high-mobility group-I or histone H1. Proceedings of the National Academy of Sciences of the United States of America, 98, 1865–1870

    Article  PubMed  CAS  Google Scholar 

  • Ilves, I., Maemets, K., Silla, T., Janikson, K., & Ustav, M. (2006). Brd4 is involved in multiple processes of the bovine papillomavirus type 1 life cycle. Journal of Virology, 80, 3660–3665

    Article  PubMed  CAS  Google Scholar 

  • Ito, S., Gotoh, E., Ozawa, S., & Yanagi, K. (2002). Epstein-Barr virus nuclear antigen-1 is highly colocalized with interphase chromatin and its newly replicated regions in particular. Journal of General Virology, 83, 2377–2383

    PubMed  CAS  Google Scholar 

  • Ito, S., Ikeda, M., Kato, N., Matsumoto, A., Ishikawa, Y., Kumakubo, S., et al. (2000). Epstein-Barr virus nuclear antigen-1 binds to nuclear transporter karyopherin α1/NPI-1 in addition to karyopherin α2/Rch1. Virology, 266, 110–119

    Article  PubMed  CAS  Google Scholar 

  • Jiang, J., Zhang, Y., Krainer, A. R., & Xu, R. M. (1999). Crystal structure of human p32, a doughnut-shaped acidic mitochondrial matrix protein. Proceedings of the National Academy of Sciences of the United States of America, 96, 3572–3577

    Article  PubMed  CAS  Google Scholar 

  • Jourdan, N., Jobart-Malfait, A., Dos Reis, G., Quignon, F., Piolot, T., Klein, C., et al. (2012). Live-cell imaging reveals multiple interactions between Epstein-Barr virus nuclear antigen 1 and cellular chromatin during interphase and mitosis. Journal of Virology, 86, 5314–5329

    Article  PubMed  CAS  Google Scholar 

  • Julien, M. D., Polonskaya, Z., & Hearing, J. (2004). Protein and sequence requirements for the recruitment of the human origin recognition complex to the latent cycle origin of DNA replication of Epstein-Barr virus oriP. Virology, 326, 317–328

    Article  PubMed  CAS  Google Scholar 

  • Kanda, T., Kamiya, M., Maruo, S., Iwakiri, D., & Takada, K. (2007). Symmetrical localization of extrachromosomally replicating viral genomes on sister chromatids. Journal of Cell Science, 120, 1529–1539

    Article  PubMed  CAS  Google Scholar 

  • Kanda, T., Otter, M., & Wahl, G. M. (2001). Coupling of mitotic chromosome tethering and replication competence in Epstein-Barr virus-based plasmids. Molecular and Cellular Biology, 21, 3576–3588

    Article  PubMed  CAS  Google Scholar 

  • Kapoor, P., & Frappier, L. (2003). EBNA1 partitions Epstein-Barr virus plasmids in yeast by attaching to human EBNA1-binding protein 2 on mitotic chromosomes. Journal of Virology, 77, 6946–6956

    Article  PubMed  CAS  Google Scholar 

  • Kapoor, P., Lavoie, B. D., & Frappier, L. (2005). EBP2 plays a key role in Epstein-Barr virus mitotic segregation and is regulated by aurora family kinases. Molecular and Cellular Biology, 25, 4934–4945

    Article  PubMed  CAS  Google Scholar 

  • Kapoor, P., Shire, K., & Frappier, L. (2001). Reconstitution of Epstein-Barr virus-based plasmid partitioning in budding yeast. EMBO Journal, 20, 222–230

    Article  PubMed  CAS  Google Scholar 

  • Kawase, H., Okuwaki, M., Miyaji, M., Ohba, R., Handa, H., Ishimi, Y., et al. (1996). NAP-1 is a functional homologue of TAF-I that is required for replication and transcription of the adenovirus genome in a chromatin-like structure. Genes to Cells, 1, 1045–1056

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, G., & Sugden, B. (2003). EBNA-1, a bifunctional transcriptional activator. Molecular and Cellular Biology, 23, 6901–6908

    Article  PubMed  CAS  Google Scholar 

  • Kim, A. L., Maher, M., Hayman, J. B., Ozer, J., Zerby, D., Yates, J. L., et al. (1997). An imperfect correlation between DNA replication activity of Epstein-Barr virus nuclear antigen 1 (EBNA1) and binding to the nuclear import receptor, Rch1/importin α. Virology, 239, 340–351

    Article  PubMed  CAS  Google Scholar 

  • Kirchmaier, A. L., & Sugden, B. (1997). Dominant-negative inhibitors of EBNA1 of Epstein-Barr virus. Journal of Virology, 71, 1766–1775

    PubMed  CAS  Google Scholar 

  • Koons, M. D., Van Scoy, S., & Hearing, J. (2001). The replicator of the Epstein-Barr virus latent cycle origin of DNA replication, oriP, is composed of multiple functional elements. Journal of Virology, 75, 10582–10592

    Article  PubMed  CAS  Google Scholar 

  • Krithivas, A., Fujimuro, M., Weidner, M., Young, D. B., & Hayward, S. D. (2002). Protein interactions targeting the latency-associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus to cell chromosomes. Journal of Virology, 76, 11596–11604

    Article  PubMed  CAS  Google Scholar 

  • Krysan, P. J., Haase, S. B., & Calos, M. P. (1989). Isolation of human sequences that replicate autonomously in human cells. Molecular and Cellular Biology, 9, 1026–1033

    PubMed  CAS  Google Scholar 

  • Kutney, S. N., Hong, R., Macfarlan, T., & Chakravarti, D. (2004). A signaling role of histone-binding proteins and INHAT subunits pp 32 and Set/TAF-Ibeta in integrating chromatin hypoacetylation and transcriptional repression. Journal of Biological Chemistry, 279, 30850–30855

    Article  PubMed  CAS  Google Scholar 

  • Laine, A., & Frappier, L. (1995). Identification of Epstein-Barr nuclear antigen 1 protein domains that direct interactions at a distance between DNA-bound proteins. Journal of Biological Chemistry, 270, 30914–30918

    Article  PubMed  CAS  Google Scholar 

  • Lee, M. A., Diamond, M. E., & Yates, J. L. (1999). Genetic evidence that EBNA-1 is needed for efficient, stable latent infection by Epstein-Barr virus. Journal of Virology, 73, 2974–2982

    PubMed  CAS  Google Scholar 

  • Lin, A., Wang, S., Nguyen, T., Shire, K., & Frappier, L. (2008). The EBNA1 protein of Epstein-Barr virus functionally interacts with Brd4. Journal of Virology, 82, 12009–12019

    Article  PubMed  CAS  Google Scholar 

  • Lindner, S. E., Zeller, K., Schepers, A., & Sugden, B. (2008). The affinity of EBNA1 for its origin of DNA synthesis is a determinant of the origin’s replicative efficiency. Journal of Virology, 82, 5693–5702

    Article  PubMed  CAS  Google Scholar 

  • Little, R. D., & Schildkraut, C. L. (1995). Initiation of latent DNA replicatoon in the Epstein-Barr virus genome can occur at sites other than the genetically defined origin. Molecular and Cellular Biology, 15, 2893–2903

    PubMed  CAS  Google Scholar 

  • Lupton, S., & Levine, A. J. (1985). Mapping of genetic elements of Epstein-Barr virus that facilitate extrachromosomal persistence of Epstein-Barr virus-derived plasmids in human cells. Molecular and Cellular Biology, 5, 2533–2542

    PubMed  CAS  Google Scholar 

  • Mackey, D., & Sugden, B. (1999). The linking regions of EBNA1 are essential for its support of replication and transcription. Molecular and Cellular Biology, 19, 3349–3359

    PubMed  CAS  Google Scholar 

  • Marechal, V., Dehee, A., Chikhi-Brachet, R., Piolot, T., Coppey-Moisan, M., & Nicolas, J. (1999). Mapping EBNA1 domains involved in binding to metaphase chromosomes. Journal of Virology, 73, 4385–4392

    PubMed  CAS  Google Scholar 

  • Matsumoto, K., Nagata, K., Ui, M., & Hanaoka, F. (1993). Template activating factor I, a novel host factor required to stimulate the adenovirus core DNA replication. Journal of Biological Chemistry, 268, 10582–10587

    PubMed  CAS  Google Scholar 

  • Matsumoto, K., Okuwaki, M., Kawase, H., Handa, H., Hanaoka, F., & Nagata, K. (1995). Stimulation of DNA transcription by the replication factor from the adenovirus genome in a chromatin-like structure. Journal of Biological Chemistry, 270, 9645–9650

    Article  PubMed  CAS  Google Scholar 

  • McPhillips, M. G., Oliveira, J. G., Spindler, J. E., Mitra, R., & McBride, A. A. (2006). Brd4 is required for E2-mediated transcriptional activation but not genome partitioning of all papillomaviruses. Journal of Virology, 80, 9530–9543

    Article  PubMed  CAS  Google Scholar 

  • Mendez, J., & Stillman, B. (2000). Chromatin association of human origin recognition coplex, cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Molecular and Cellular Biology, 20, 8602–8612

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto, S., Suzuki, T., Muto, S., Aizawa, K., Kimura, A., Mizuno, Y., et al. (2003). Positive and negative regulation of the cardiovascular transcription factor KLF5 by p300 and the oncogenic regulator SET through interaction and acetylation on the DNA-binding domain. Molecular and Cellular Biology, 23, 8528–8541

    Article  PubMed  CAS  Google Scholar 

  • Moriyama, K., Yoshizawa-Sugata, N., Obuse, C., Tsurimoto, T., & Masai, H. (2012). Epstein-Barr nuclear antigen 1 (EBNA1)-dependent recruitment of origin recognition complex (Orc) on oriP of Epstein-Barr virus with purified proteins: Stimulation by Cdc6 through its direct interaction with EBNA1. Journal of Biological Chemistry, 287, 23977–23994

    Article  PubMed  CAS  Google Scholar 

  • Murakami, M., Lan, K., Subramanian, C., & Robertson, E. S. (2005). Epstein-Barr virus nuclear antigen 1 interacts with Nm23-H1 in lymphoblastoid cell lines and inhibits its ability to suppress cell migration. Journal of Virology, 79, 1559–1568

    Article  PubMed  CAS  Google Scholar 

  • Nagata, K., Kawase, H., Handa, H., Yano, K., Yamasaki, M., Ishimi, Y., et al. (1995). Replication factor encoded by a putative oncogene, set, associated with myeloid leukemogenesis. Proceedings of the National Academy of Sciences of the United States of America, 92, 4279–4283

    Article  PubMed  CAS  Google Scholar 

  • Nanbo, A., Sugden, A., & Sugden, B. (2007). The coupling of synthesis and partitioning of EBV’s plasmid replicon is revealed in live cells. EMBO Journal, 26, 4252–4262

    Article  PubMed  CAS  Google Scholar 

  • Nayyar, V. K., Shire, K., & Frappier, L. (2009). Mitotic chromosome interactions of Epstein-Barr nuclear antigen 1 (EBNA1) and human EBNA1-binding protein 2 (EBP2). Journal of Cell Science, 122, 4341–4350

    Article  PubMed  CAS  Google Scholar 

  • Niller, H. H., Glaser, G., Knuchel, R., & Wolf, H. (1995). Nucleoprotein complexes and DNA 5’-ends at oriP of Epstein-Barr virus. Journal of Biological Chemistry, 270, 12864–12868

    Article  PubMed  CAS  Google Scholar 

  • Norio, P., & Schildkraut, C. L. (2001). Visualization of DNA replication on individual Epstein-Barr virus episomes. Science, 294, 2361–2364

    Article  PubMed  CAS  Google Scholar 

  • Norio, P., & Schildkraut, C. L. (2004). Plasticity of DNA replication initiation in Epstein-Barr virus episomes. PLoS Biology, 2, e152

    Article  PubMed  Google Scholar 

  • Norio, P., Schildkraut, C. L., & Yates, J. L. (2000). Initiation of DNA replication within oriP is dispensable for stable replication of the latent Epstein-Barr virus chromosome after infection of established cell lines. Journal of Virology, 74, 8563–8574

    Article  PubMed  CAS  Google Scholar 

  • Norseen, J., Johnson, F. B., & Lieberman, P. M. (2009). Role for G-quadruplex RNA binding by Epstein-Barr virus nuclear antigen 1 in DNA replication and metaphase chromosome attachment. Journal of Virology, 83, 10336–10346

    Article  PubMed  CAS  Google Scholar 

  • Norseen, J., Thomae, A., Sridharan, V., Aiyar, A., Schepers, A., & Lieberman, P. M. (2008). RNA-dependent recruitment of the origin recognition complex. EMBO Journal, 27, 3024–3035.

    Article  PubMed  CAS  Google Scholar 

  • Parish, J. L., Bean, A. M., Park, R. B., & Androphy, E. J. (2006). ChlR1 is required for loading papillomavirus E2 onto mitotic chromosomes and viral genome maintenance. Molecular Cell, 24, 867–876

    Article  PubMed  CAS  Google Scholar 

  • Park, Y. J., & Luger, K. (2006). Structure and function of nucleosome assembly proteins. Biochemistry and Cell Biology, 84, 549–558

    Article  PubMed  CAS  Google Scholar 

  • Petti, L., Sample, C., & Kieff, E. (1990). Subnuclear localization and phosphorylation or Epstein-Barr virus latent infection nuclear proteins. Virology, 176, 563–574

    Article  PubMed  CAS  Google Scholar 

  • Polvino-Bodnar, M., & Schaffer, P. A. (1992). DNA binding activity is required for EBNA1-dependent transcriptional activation and DNA replication. Virology, 187, 591–603

    Article  PubMed  CAS  Google Scholar 

  • Rawlins, D. R., Milman, G., Hayward, S. D., & Hayward, G. S. (1985). Sequence-specific DNA binding of the Epstein-Barr virus nuclear antigen (EBNA1) to clustered sites in the plasmid maintenance region. Cell, 42, 859–868

    Article  PubMed  CAS  Google Scholar 

  • Rehtanz, M., Schmidt, H. M., Warthorst, U., & Steger, G. (2004). Direct interaction between nucleosome assembly protein 1 and the papillomavirus E2 proteins involved in activation of transcription. Molecular and Cellular Biology, 24, 2153–2168

    Article  PubMed  CAS  Google Scholar 

  • Reisman, D., & Sugden, B. (1986). trans Activation of an Epstein-Barr viral transcriptional enhancer by the Epstein-Barr viral nuclear antigen 1. Molecular and Cellular Biology, 6, 3838–3846

    PubMed  CAS  Google Scholar 

  • Reisman, D., Yates, J., & Sugden, B. (1985). A putative origin of replication of plasmids derived from Epstein-Barr virus is composed of two cis-acting components. Molecular and Cellular Biology, 5, 1822–1832

    PubMed  CAS  Google Scholar 

  • Rialland, M., Sola, F., & Santocanale, C. (2002). Essential role of human CDT1 in DNA replication and chromatin licensing. Journal of Cell Science, 115, 1435–1440

    PubMed  CAS  Google Scholar 

  • Ritzi, M., Tillack, K., Gerhardt, J., Ott, E., Humme, S., Kremmer, E., et al. (2003). Complex protein-DNA dynamics at the latent origin of DNA replication of Epstein-Barr virus. Journal of Cell Science, 116, 3971–3984

    Article  PubMed  CAS  Google Scholar 

  • Sarkari, F., Sanchez-Alcaraz, T., Wang, S., Holowaty, M. N., Sheng, Y., & Frappier, L. (2009). EBNA1-mediated recruitment of a histone H2B deubiquitylating complex to the Epstein-Barr virus latent origin of DNA replication. PLoS Pathogens, 5, e1000624

    Article  PubMed  CAS  Google Scholar 

  • Schepers, A., Ritzi, M., Bousset, K., Kremmer, E., Yates, J. L., Harwood, J., et al. (2001). Human origin recognition complex binds to the region of the latent origin of DNA replication of Epstein-Barr virus. EMBO Journal, 20, 4588–4602

    Article  PubMed  CAS  Google Scholar 

  • Schweiger, M. R., You, J., & Howley, P. M. (2006). Bromodomain protein 4 mediates the papillomavirus E2 transcriptional activation function. Journal of Virology, 80, 4276–4285

    Article  PubMed  CAS  Google Scholar 

  • Sears, J., Kolman, J., Wahl, G. M., & Aiyar, A. (2003). Metaphase chromosome tethering is necessary for the DNA synthesis and maintenance of oriP plasmids but is insufficient for transcription activation by Epstein-Barr nuclear antigen 1. Journal of Virology, 77, 11767–11780

    Article  PubMed  CAS  Google Scholar 

  • Sears, J., Ujihara, M., Wong, S., Ott, C., Middeldorp, J., & Aiyar, A. (2004). The amino terminus of Epstein-Barr Virus (EBV) nuclear antigen 1 contains AT hooks that facilitate the replication and partitioning of latent EBV genomes by tethering them to cellular chromosomes. Journal of Virology, 78, 11487–11505

    Article  PubMed  CAS  Google Scholar 

  • Seo, S.-B., McNamara, P., Heo, S., Turner, A., Lane, W. S., & Chakravarti, D. (2001). Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the Set oncoprotein. Cell, 104, 119–130

    Article  PubMed  CAS  Google Scholar 

  • Shaw, J., Levinger, L., & Carter, C. (1979). Nucleosomal structure of Epstein-Barr virus DNA in transformed cell lines. Journal of Virology, 29, 657–665

    PubMed  CAS  Google Scholar 

  • Shikama, N., Chan, H. M., Krstic-Demonacos, M., Smith, L., Lee, C. W., Cairns, W., et al. (2000). Functional interaction between nucleosome assembly proteins and p300/CREB-binding protein family coactivators. Molecular and Cellular Biology, 20, 8933–8943

    Article  PubMed  CAS  Google Scholar 

  • Shirakata, M., Imadome, K.-I., Okazaki, K., & Hirai, K. (2001). Activation of TRAF5 and TRAF6 signal cascades negatively regulates the latent replication origin of Epstein-Barr virus through p38 mitogen-activated protein kinase. Journal of Virology, 75, 5059–5068

    Article  PubMed  CAS  Google Scholar 

  • Shire, K., Ceccarelli, D. F. J., Avolio-Hunter, T. M., & Frappier, L. (1999). EBP2, a human protein that interacts with sequences of the Epstein-Barr nuclear antigen 1 important for plasmid maintenance. Journal of Virology, 73, 2587–2595

    PubMed  CAS  Google Scholar 

  • Shire, K., Kapoor, P., Jiang, K., Hing, M. N., Sivachandran, N., Nguyen, T., et al. (2006). Regulation of the EBNA1 Epstein-Barr virus protein by serine phosphorylation and arginine methylation. Journal of Virology, 80, 5261–5272

    Article  PubMed  CAS  Google Scholar 

  • Simpson, K., McGuigan, A., & Huxley, C. (1996). Stable episomal maintenance of yeast artificial chromosomes in human cells. Molecular and Cellular Biology, 16, 5117–5126

    PubMed  CAS  Google Scholar 

  • Snudden, D.K., Hearing, J., Smith, P.R., Grasser, F.A., & Griffin, B.E. (1994). EBNA1, the major nuclear antigen of Epstein-Barr virus, resenbles ‘RGG’ RNA binding proteins. EMBO Journal, 13, 4840-4848-4847

    Google Scholar 

  • Sternas, L., Middleton, T., & Sugden, B. (1990). The average number of molecules of Epstein-Barr nuclear antigen 1 per cell does not correlate with the average number of Epstein-Barr virus (EBV) DNA molecules per cell among different clones of EBV-immortalized cells. Journal of Virology, 64, 2407–2410

    PubMed  CAS  Google Scholar 

  • Sugden, B., & Warren, N. (1989). A promoter of Epstein-Barr virus that can function during latent infection can be transactivated by EBNA-1, a viral protein required for viral DNA replication during latent infection. Journal of Virology, 63, 2644–2649

    PubMed  CAS  Google Scholar 

  • Van Scoy, S., Watakabe, I., Krainer, A. R., & Hearing, J. (2000). Human p32: A coactivator for Epstein-Barr virus nuclear antigen-1-mediated transcriptional activation and possible role in viral latent cycle DNA replication. Virology, 275, 145–157

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Finan, J. E., Middeldorp, J. M., & Hayward, S. D. (1997). P32/TAP, a cellular protein that interacts with EBNA-1 of Epstein-Barr virus. Virology, 236, 18–29

    Article  PubMed  CAS  Google Scholar 

  • Wang, S., & Frappier, L. (2009). Nucleosome assembly proteins bind to Epstein-Barr virus nuclear antigen 1 and affect its functions in DNA replication and transcriptional activation. Journal of Virology, 83, 11704–11714

    Article  PubMed  CAS  Google Scholar 

  • Wu, H., Ceccarelli, D. F. J., & Frappier, L. (2000). The DNA segregation mechanism of the Epstein-Barr virus EBNA1 protein. EMBO Reports, 1, 140–144

    Article  PubMed  CAS  Google Scholar 

  • Wu, S. Y., & Chiang, C. M. (2007). The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation. Journal of Biological Chemistry, 282, 13141–13145

    Article  PubMed  CAS  Google Scholar 

  • Wu, H., Kapoor, P., & Frappier, L. (2002a). Separation of the DNA replication, segregation and transcriptional activation functions of Epstein-Barr nuclear antigen 1. Journal of Virology, 76, 2480–2490

    Article  PubMed  CAS  Google Scholar 

  • Wu, H., Kapoor, P., & Frappier, L. (2002b). Separation of the DNA replication, segregation, and transcriptional activation functions of Epstein-Barr nuclear antigen 1. Journal of Virology, 76, 2480–2490

    Article  PubMed  CAS  Google Scholar 

  • Wysokenski, D. A., & Yates, J. L. (1989). Multiple EBNA1-binding sites are required to form an EBNA1-dependent enhancer and to activate a minimal replicative origin within oriP of Epstein-Barr virus. Journal of Virology, 63, 2657–2666

    PubMed  CAS  Google Scholar 

  • Yates, J. L., & Camiolo, S. M. (1988). Dissection of DNA replication and enhancer activation functions of Epstein-Barr virus nuclear antigen 1. Cancer Cells, 6, 197–205

    CAS  Google Scholar 

  • Yates, J. L., Camiolo, S. M., & Bashaw, J. M. (2000). The minimal replicator of Epstein-Barr virus oriP. Journal of Virology, 74, 4512–4522

    Article  PubMed  CAS  Google Scholar 

  • Yates, J. L., & Guan, N. (1991). Epstein-Barr virus-derived plasmids replicate only once per cell cycle and are not amplified after entry into cells. Journal of Virology, 65, 483–488

    PubMed  CAS  Google Scholar 

  • Yates, J. L., Warren, N., Reisman, D., & Sugden, B. (1984). A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proceedings of the National Academy of Sciences of the United States of America, 81, 3806–3810

    Article  PubMed  CAS  Google Scholar 

  • Yates, J. L., Warren, N., & Sugden, B. (1985). Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature, 313, 812–815

    Article  PubMed  CAS  Google Scholar 

  • You, J. (2010). Papillomavirus interaction with cellular chromatin. Biochimica et Biophysica Acta, 1799, 192–199

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lori Frappier .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Frappier, L. (2013). Roles of EBNA1 at EBV Episomes. In: EBNA1 and Epstein-Barr Virus Associated Tumours. SpringerBriefs in Cancer Research, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6886-8_2

Download citation

Publish with us

Policies and ethics