Skip to main content

Diagnosis and Control of Nonlinear Oscillations of a Fluttering Plate

  • Chapter
  • First Online:
Nonlinear Approaches in Engineering Applications 2
  • 1479 Accesses

Abstract

This chapter focuses on both diagnosing and controlling the nonlinear dynamic responses of a fluttering plate excited by a high-velocity air flow. Six modes of the motion are considered for obtaining the numerical solutions of the system, and the modes are used to investigate the nonlinear dynamic responses of the fluttering. Due to the different characteristics of the diagnosing methods for nonlinear systems, Lyapunov Exponent method is employed to detect the system motion of each mode, while the Periodicity Ratio method is utilized to detect the behavior of entire system motion subjected to non-periodic excitations generated by the air flow. A newly developed control strategy, modified FSMC method, is applied to control the nonlinear oscillatory responses of the system. The approaches presented in this chapter have research and engineering application significances in the fields of aerodynamics, nonlinear dynamics, aircraft design, and design of space vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bolotin VV (1963) Nonconservative problems of the theory of elastic stability. Pergamon Press, New York

    Google Scholar 

  2. Kantorowich LV, Krylov VI (1964) Approximate methods of higher analysis. Interscience, New~York

    Google Scholar 

  3. Mikhlin, SG (1964) Variational methods in mathematical physics. MacMillan, New York

    Google Scholar 

  4. Dowell EH (1966) Nonlinear oscillations of a fluttering plate. AIAA J 4(7):1267–1275

    Article  Google Scholar 

  5. Dowell EH (1967) Nonlinear oscillations of a fluttering plate II. AIAA J 5(10):1856–1862

    Article  Google Scholar 

  6. Shiau LC, Lu LT (1992) Nonlinear flutter of two-dimensional simply supported symmetric composite laminated plates. J Aircraft 29(1):140–145

    Google Scholar 

  7. Reddy JN (1986) Applied functional analysis and variational methods in engineering. McGraw-Hill, New York

    Google Scholar 

  8. Ketter DJ (1967) Flutter of flat, rectangular, orthotropic panels. AIAA J 5(1):116–124

    Google Scholar 

  9. Garrick EI, Reed WH (1981) Historical development of aircraft flutter. J Aircraft 18(11):897–912

    Article  Google Scholar 

  10. Sipcic SR (1990) The chaotic response of a fluttering panel: the influence of maneuvering. Nonlinear Dyn 1(3):243–264

    Article  Google Scholar 

  11. Shubov MA (2006) Flutter phenomenon in aeroelasticity and its mathematical analysis. J Aerospace Eng 19(1):1–12

    Article  Google Scholar 

  12. Dowell EH, Ventres CS (1970) Comparison of theory and experiment for nonlinear flutter of loaded plates. AIAA J 8(11):2022–2030

    Article  MATH  Google Scholar 

  13. Li KL, Zhang JZ, Lei PF (2010) Simulation and nonlinear analysis of panel flutter with thermal effects in supersonic flow. In: Luo ACJ (ed) Dynamical systems. Springer, New York, pp 61–76

    Chapter  Google Scholar 

  14. Librescu L, Marzocca P, Silva WA (2004) Linear/nonlinear supersonic panel flutter in a high-temperature field. J Aircraft 41(4):918–924

    Article  Google Scholar 

  15. Schaeffer HG, Heard WL (1965) Flutter of a flat panel subjected to a nonlinear temperature distribution. AIAA J 3(10):1918–1923

    Article  Google Scholar 

  16. Xue DY, Mei C (1993) Finite element nonlinear panel flutter with arbitrary temperatures in supersonic flow. AIAA J 31(1):154–162

    Article  MATH  Google Scholar 

  17. Alligood KT, Sauer T, Yorke JA (1997) Chaos: an introduction to dynamical systems. Springer, New York, LLC

    Book  Google Scholar 

  18. Devaney RL (2003) An introduction to chaotic dynamical systems. Westview Press

    Google Scholar 

  19. Gollub JP, Baker GL (1996) Chaotic dynamics. Cambridge University Press

    Google Scholar 

  20. Nayfeh AH, Mook DT (1989) Non-linear oscillation. Wiley, New York

    Google Scholar 

  21. Strogatz S (2000) Nonlinear dynamics and chaos. Perseus Publishing

    Google Scholar 

  22. Valsakumar MC, Satyanarayana SV, Sridhar V (1997) Signature of chaos in power spectrum. Pramana J Phys 48:69–85

    Article  Google Scholar 

  23. Peitgen HO, Richter PH (1986) The beauty of fractals: images of complex dynamical systems. Springer

    Google Scholar 

  24. Peitgen HO, Saupe D (1988) The science of fractal images. Springer

    Google Scholar 

  25. Lauwerier H (1991) Fractals. Princeton University Press

    Google Scholar 

  26. Kumar A (2003) Chaos, fractals and self-organisation, new perspectives on complexity in nature. National Book Trust

    Google Scholar 

  27. Zaslavsky GM (2005) Hamiltonian chaos and fractional dynamics. Oxford University Press

    Google Scholar 

  28. Parks PC (1992) Lyapunov’s stability theory – 100 years on. IMA J Math Control Inf 9:275–303

    Article  MathSciNet  MATH  Google Scholar 

  29. Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov Exponents from a time series. Phys D Nonlinear Phenom 16(3):285–317

    Article  MathSciNet  MATH  Google Scholar 

  30. Dai L, Singh MC (1997) Diagnosis of periodic and chaotic responses in vibratory systems. J Acoust Soc Am 102(6):3361–3371

    Article  Google Scholar 

  31. Utkin VI (1992) Sliding modes in control and optimization. Springer, Berlin

    Book  MATH  Google Scholar 

  32. Kuo CL, Shieh CS, Lin CH, Shih SP (2007) Design of fuzzy sliding-mode controllerfor chaos synchronization. Commun Comput Inf Sci 5:36–45

    Article  Google Scholar 

  33. Yau HT, Kuo CL (2006) Fuzzy sliding mode control for a class of chaos synchronization with uncertainties. Int J Nonlinear Sci Numer Simul 7(3):333–338

    Article  Google Scholar 

  34. Yau HT, Wang CC, Hsieh CT, Cho CC (2011) Nonlinear analysis and control of the uncertain micro-electromechanical system by using a fuzzy sliding mode control design. Comput Math Appl 61(8):1912–1916

    Article  MathSciNet  MATH  Google Scholar 

  35. Haghighi HH, Markazi AH (2010) Chaos prediction and control in MEMS resonators. Commun Nonlinear 15(10):3091–3099

    Article  Google Scholar 

  36. Dai L, Sun L (2012) On the fuzzy sliding mode control of nonlinear motion in a laminated beam. JAND 1(13):287–307

    Google Scholar 

  37. Donea JA (1984) Taylor–Galerkin method for convective transport problems. Int J Numer Meth Eng 20(1):101–119

    Article  MathSciNet  MATH  Google Scholar 

  38. Dai L, Han L (2011) Analysing periodicity, nonlinearity and transitional characteristics of nonlinear dynamic systems with Periodicity Ratio (PR). Commun Nonlinear Sci Numer Simul 16(12):4731–4744

    Article  MathSciNet  MATH  Google Scholar 

  39. Dai L, Singh MC (1995) Periodicity ratio in diagnosing chaotic vibrations. In: 15th Canadian congress of applied mechanics, vol 1, pp 390–391

    Google Scholar 

  40. Dai L, Singh MC (1998) Periodic, Quasiperiodic and chaotic behavior of a driven froude pendulum. Nonlinear Mech 33(6):947–965

    Article  MathSciNet  MATH  Google Scholar 

  41. Rong H, Meng G, Wang X, Xu W, Fang T (2002) Invariant measures and Lyapunov-exponents for stochastic Mathieu system. Nonlinear Dyn 30:313–321

    Article  MathSciNet  MATH  Google Scholar 

  42. Shahverdian AY, Apkarian AV (2007) A difference characteristic for one-dimensional deterministic systems. Commun Nonlinear 12(3):233–242

    Article  MathSciNet  MATH  Google Scholar 

  43. Dai L, Wang G (2008) Implementation of periodicity ratio in analyzing nonlinear dynamic systems: a comparison with Lyapunov exponent. J Comput Nonlinear Dyn 3(011006):1–9

    Google Scholar 

  44. Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer, New York, LLC

    Book  MATH  Google Scholar 

  45. Hosseini M, Fazelzadeh S (2010) Aerothermoelastic posting-critical and vibration analysis of temperature-dependent functionally graded panels. J Therm Stresses 33:1188–1212

    Article  Google Scholar 

  46. Lakshmanan M, Rajasekar S (2003) Nonlinear dynamics: integrability, chaos, and patterns. Springer, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Dai .

Editor information

Editors and Affiliations

Key Symbols

\( D \)

Plate stiffness

\( E \)

Modulus of elasticity

\( h \)

Plate thickness

\( K \)

Spring constant

\( L \)

Panel length

M

Mach number

\( m \)

Mode number

\( {N_x} \)

In-plane force

\( N_x^{(a) } \)

Applied in-plane force

\( p-{p_{\infty }} \)

Aerodynamic pressure

\( \varDelta p \)

Static pressure differential across the panel

\( P \)

\( {{{\varDelta p{l^4}}} \left/ {Dh } \right.} \)

\( {R_x} \)

\( {{{N_x^{(a) }{L^2}}} \left/ {D} \right.} \)

\( r \)

Mode number

\( s \)

Mode number

\( t \)

Time

\( {U_{\infty }} \)

Flow velocity

\( W \)

\( {w \left/ {h} \right.} \)

\( w \)

Plate deflection

\( \alpha \)

Spring stiffness parameter

\( \beta \)

\( {{({M^2}-1)}^{{{1 \left/ {2} \right.}}}} \)

\( \lambda \)

\( {{{2q{a^3}}} \left/ {{\beta D}} \right.} \)

\( \mu \)

\( {{{\rho L}} \left/ {{{\rho_m}h}} \right.} \)

\( \nu \)

Poisson’s ratio

\( \rho \)

Air density

\( {\rho_m} \)

Plate density

\( \tau \)

\( t{{({D / {{{\rho_m}h{l^4}}} })}^{{{1 \left/ {2} \right.}}}} \)

\( {a_{s1 }} \)

The displacement corresponding to the \( s\mathrm{th} \) mode

\( {a_{s2 }} \)

The velocity corresponding to the \( s\mathrm{th} \) mode

\( {x_{s1 }} \)

The displacement of the reference signal of the \( s\mathrm{th} \) mode

\( {x_{s2 }} \)

The velocity of the reference signal corresponding to the \( s\mathrm{th} \) mode

\( \mathrm{a} \)

The column vector of the velocity and acceleration of the \( s \) modes

\( {f_s}\left( {\mathrm{a},\tau } \right) \)

The expression of the acceleration corresponding to the \( s\mathrm{th} \) modes

\( {g_s}\left( {\mathrm{a},\tau } \right) \)

The expression of the reference signal acceleration of the \( s\mathrm{th} \) mode

\( {d_s}\left( {\mathrm{a},\tau } \right) \)

The uncertain external disturbance corresponding to the \( s\mathrm{th} \) mode

\( {u_s} \)

The control input corresponding to the \( s\mathrm{th} \) mode

\( R \)

Real number

\( ue{q_s} \)

The equivalent control input corresponding to the \( s\mathrm{th} \) mode

\( {\eta_s} \)

A positive real number

\( k{f_s} \)

The normalization factor of \( \mathrm{a} \) corresponding to the \( s\mathrm{th} \) mode

\( n \)

The number of points in Poincare map

\( NPP \)

The number of periodically overlapped points in Poincare map

\( Q(.),P(.) \)

The step functions

\( \gamma \)

The periodicity ratio

\( {f_s}(\mathrm{a},\tau ) \)

The expression of the acceleration corresponding to the \( s\mathrm{th} \) modes

\( J \)

The Jacobian matrix

\( LE(\hat{\lambda}) \)

Lyapunov Exponents

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dai, L., Han, L., Sun, L., Wang, X. (2014). Diagnosis and Control of Nonlinear Oscillations of a Fluttering Plate. In: Jazar, R., Dai, L. (eds) Nonlinear Approaches in Engineering Applications 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6877-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6877-6_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6876-9

  • Online ISBN: 978-1-4614-6877-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics