Skip to main content

Signal Processing for Wireless Transceivers

  • Chapter
  • First Online:

Abstract

The data rates as well as quality of service (QoS) requirements for rich user experience in wireless communication services are continuously growing. While consuming a major portion of the energy needed by wireless devices, the wireless transceivers have a key role in guaranteeing the needed data rates with high bandwidth efficiency. The cost of wireless devices also heavily depends on the transmitter and receiver technologies. In this chapter, we concentrate on the problem of transmitting information sequences efficiently through a wireless channel and performing reception such that it can be implemented with state of the art signal processing tools. The operations of the wireless devices can be divided to RF and baseband (BB) processing. Our emphasis is to cover the BB part, including the coding, modulation, and waveform generation functions, which are mostly using the tools and techniques from digital signal processing. But we also look at the overall transceiver from the RF system point of view, covering issues like frequency translations and channelization filtering, as well as emerging techniques for mitigating the inevitable imperfections of the analog RF circuitry through advanced digital signal processing techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The terminology reflects the fact that the transform length in the core OFDM system is typically a power of two, whereas also other lengths need to be considered for the SC symbol block in order to reach sufficient flexibility.

  2. 2.

    This follows from the fact that uniform subcarrier interleaving corresponds to pulse repetition in time domain.

References

  1. IEEE Journal on Selected Areas in Communications, Special issue on the turbo principle: From theory to practise I, May (2001)

    Google Scholar 

  2. IEEE Journal on Selected Areas in Communications, Special issue on the turbo principle: From theory to practise II, Sep (2001)

    Google Scholar 

  3. Akyildiz, I., Lee, W., Vuran, M., Mohanty, S.: Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks Journal, Elsevier 50, 2127–2159 (2006)

    Article  MATH  Google Scholar 

  4. Allen, M., Marttila, J., Valkama, M.: Digital post-processing for reducing A/D converter nonlinear distortion in wideband radio receivers. In: Signals, Systems and Computers, 2009 Conference Record of the Forty-Third Asilomar Conference on, pp. 1111–1114 (2009)

    Google Scholar 

  5. Anderson, J., Mohan, S.: Source and channel coding: An algorithmic approach. IEEE Trans. Commun. 32(2), 169–176 (1984)

    Article  Google Scholar 

  6. Anttila, L., Händel, P., Valkama, M.: Joint Mitigation of Power Amplifier and I/Q Modulator Impairments in Broadband Direct-Conversion Transmitters. IEEE Trans. Microwave Theory and Techniques 58, 730–739 (2010)

    Article  Google Scholar 

  7. Anttila, L., Valkama, M., Renfors, M.: Circularity-based I/Q imbalance compensation in wideband direct-conversion receivers. IEEE Trans. Veh. Technol. 57(4), 2099–2113 (2008)

    Article  Google Scholar 

  8. Anttila, L., Zou, Y., Valkama, M.: Digital compensation and calibration of I/Q gain and phase imbalances, chap. 16. Cambridge University Press, Cambridge, UK (2011)

    Google Scholar 

  9. Arkesteijn, V., Klumperink, E., Nauta, B.: Jitter requirements of the sampling clock in software radio receivers. IEEE Trans. Circuits Syst. II 53(2), 90–94 (2006)

    Article  Google Scholar 

  10. Aschbacher, E.: Digital Predistortion of Microwave Power Amplifiers, Ph.D. thesis. Technishe Universitat Wien (2004)

    Google Scholar 

  11. Auer, G.: Bandwidth efficient 3D pilot design for MIMO-OFDM. In: Proc. European Wireless Conf. Lucca, Italy (2010)

    Google Scholar 

  12. Baltar, L., Schaich, F., Renfors, M., Nossek, J.: Computational complexity analysis of advanced physical layers based on multicarrier modulation. In: Proc. Future Network & Mobile Summit, pp. 1–8. Warsaw, Poland (2011)

    Google Scholar 

  13. Benedetto, S., Biglieri, E.: Principles of Digital Transmission; With Wireless Applications. Kluwer Academic Publishers, New York (1999)

    MATH  Google Scholar 

  14. Benvenuto, N., Tomasin, S.: On the comparison between OFDM and single carrier modulation with a DFE using a frequency-domain feedforward filter. IEEE Trans. Commun. 50(6), 947–955 (2002)

    Article  Google Scholar 

  15. Berrou, C., Glavieux, A.: Near optimum error correcting coding and decoding: Turbo codes. IEEE Trans. Commun. 44(10), 1261–1271 (1996)

    Article  Google Scholar 

  16. Berrou, C., Glavieux, A., Thitimajshima, P.: Near Shannon limit error correcting coding and decoding: Turbo codes. In: Proc. IEEE Int. Conf. Commun., vol. 2, pp. 1064–1070. Geneva, Switzerland (1993)

    Google Scholar 

  17. Bingham, J.: Multicarrier modulation for data transmission: An idea whose time has come. IEEE Communications Magazine 28(5), 5–14 (1990)

    Article  MathSciNet  Google Scholar 

  18. Boelcskei, H., Gesbert, D., Papadias, C.B., van der Veen, A.J.: Space-Time Wireless Systems: From Array Processing to MIMO Communications. Cambridge University Press, Cambridge, UK (2006)

    Google Scholar 

  19. Brandes, S., Cosovic, I., Schnell, M.: Sidelobe suppression in OFDM systems by insertion of cancellation carriers. In: Proc. IEEE Veh. Technol. Conf. Fall, pp. 152–156. Los Angeles, CA, USA (2005)

    Google Scholar 

  20. Cavers, J.K.: An analysis of pilot symbol assisted modulation for Rayleigh fading channels. IEEE Trans. Veh. Technol. 40(4), 686–693 (1991)

    Article  Google Scholar 

  21. Chang, R.: High-speed multichannel data transmission with bandlimited orthogonal signals. Bell Syst. Tech. J. 45, 1775–1796 (1966)

    Google Scholar 

  22. Chen, H.M., Chen, W.C., Chung, C.D.: Spectrally precoded OFDM and OFDMA with cyclic prefix and unconstrained guard ratios. IEEE Trans. Wireless Commun. 10(5), 1416–1427 (2011)

    Article  MathSciNet  Google Scholar 

  23. Chen, L., Chen, W., Zhang, X., Yang, D.: Analysis and simulation for spectrum aggregation in LTE-advanced system. In: Proc. IEEE Veh. Technol. Conf. Fall, pp. 1–6. Anchorage, AK, USA (2009)

    Google Scholar 

  24. Cherubini, G., Eleftheriou, E., Olcer, S.: Filtered multitone modulation for VDSL. In: Proc. IEEE Global Telecommun. Conf., pp. 1139–1144 (1999)

    Google Scholar 

  25. Collings, I., Butler, M., McKay, M.: Low complexity receiver design for MIMO bit-interleaved coded modulation. In: Proc. IEEE Int. Symp. Spread Spectrum Techniques and Applications, pp. 1993–1997. Sydney, Australia (2004)

    Google Scholar 

  26. Cosovic, I., Brandes, S., Schnell, M.: Subcarrier weighting: a method for sidelobe suppression in OFDM systems. IEEE Commun. Lett. 10(6), 444–446 (2006)

    Article  Google Scholar 

  27. Coulson, A., Vaughan, R., Poletti, M.: Frequency-shifting using bandpass sampling. IEEE Trans. Signal Processing 42(6), 1556–1559 (1994)

    Article  Google Scholar 

  28. Crochiere, R., Rabiner, L.: Multirate Digital Signal Processing. Prentice-Hall, Englewood Cliffs, NJ, USA (1983)

    Google Scholar 

  29. Crols, J., Steyaert, M.: CMOS Wireless Transceiver Design. Kluwer, Dordrecht, The Netherlands (1997)

    MATH  Google Scholar 

  30. Dahlman, E., Parkvall, S., Sköld, J.: 4G LTE / LTE-Advanced for Mobile Broadband. Academic Press (2011)

    Google Scholar 

  31. Damen, M.O., Gamal, H.E., Caire, G.: On maximum–likelihood detection and the search for the closest lattice point. IEEE Trans. Inform. Theory 49(10), 2389–2402 (2003)

    Article  MathSciNet  Google Scholar 

  32. Demir, A., Mehrotra, A., Roychowdhury, J.: Phase noise in oscillators: a unifying theory and numerical methods for characterization. Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on 47(5), 655–674 (2000)

    Article  Google Scholar 

  33. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc. 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  34. Ding, L.: Digital Predistortion of Power Amplifiers for Wireless Applications, Ph.D. thesis. School of Electrical and Computer Engineering, Georgia Institute of Technology (2004)

    Google Scholar 

  35. Dufrêne, K., Boos, Z., Weigel, R.: Digital adaptive IIP2 calibration scheme for CMOS downconversion mixers. IEEE J. Solid-State Circuits 43(11), 2434–2445 (2008)

    Article  Google Scholar 

  36. Falconer, D., Ariyavisitakul, S.L., Benyamin-Seeyar, A., Eidson, B.: Frequency domain equalization for single-carrier broadband wireless systems. IEEE Commun. Mag. 40(4), 58–66 (2002)

    Article  Google Scholar 

  37. Farhang-Boroujeny, B., Kempter, R.: Multicarrier communication techniques for spectrum sensing and communication in cognitive radios. IEEE Commun. Mag. 46(4), 80–85 (2008)

    Article  Google Scholar 

  38. Faulkner, M.: The effect of filtering on the performance of OFDM systems. IEEE Trans. Veh. Technol. 49(9), 1877–1884 (2000)

    Article  Google Scholar 

  39. Faulkner, M., Mattsson, T., Yates, W.: Automatic adjustment of quadrature modulators. IEE Electron. Lett. 27(3), 214–216 (1991)

    Article  Google Scholar 

  40. Fessler, J., Hero, A.: Space-alternating generalized expectation-maximization algorithm. IEEE Trans. Signal Processing 42(10), 2664–2677 (1994)

    Article  Google Scholar 

  41. Fettweis, G., Krondorf, M., Bittner, S.: GFDM - generalized frequency division multiplexing. In: Proc. IEEE Veh. Technol. Conf. Spring. Barcelona, Spain (2009)

    Google Scholar 

  42. Fettweis, G., Löhning, M., Petrovic, D., Windisch, M., Zillmann, P., Rave, W.: Dirty RF: A new paradigm. Int. J. Wireless Inform. Networks 14, 138–148 (2007)

    Article  Google Scholar 

  43. Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Math. Comput. 44(5), 463–471 (1985)

    MathSciNet  MATH  Google Scholar 

  44. Forney, G.D.: The Viterbi algorithm. Proc. IEEE 61(3), 268–278 (1973)

    Article  MathSciNet  Google Scholar 

  45. Frerking, M.E.: Digital Signal Processing in Communication Systems. Chapman & Hall, New York, USA (1994)

    Book  Google Scholar 

  46. Gallager, R.: Low-Density Parity-Check Codes. MIT Press, Cambridge, USA (1963)

    Google Scholar 

  47. 3rd Generation Partnership Project (3GPP); Technical Specification Group Radio Access Network: Evolved universal terrestrial radio access E-UTRA; physical channels and modulation TS 36.211 (version 8.5.0). Tech. rep. (2008)

    Google Scholar 

  48. Goldsmith, A.: Wireless Communications. Cambridge University Press, NY, USA (2005)

    Book  Google Scholar 

  49. Guo, Z., Nilsson, P.: Algorithm and implementation of the K-best sphere decoding for MIMO detection. IEEE J. Select. Areas Commun. 24(3), 491–503 (2006)

    Article  Google Scholar 

  50. Hahn, S.L.: Hilbert Transforms in Signal Processing. Artech House, MA, USA (1996)

    MATH  Google Scholar 

  51. Hanzo, L., Liew, T., Yeap, B.: Turbo Coding, Turbo Equalisation and Space-Time Coding for Transmission over Fading Channels. John Wiley & Sons, Chichester, UK (2002)

    Google Scholar 

  52. Hara, S., Prasad, R.: Design and performance of multicarrier CDMA system in frequency-selective Rayleigh fading channels. IEEE Trans. Veh. Technol. 48(5), 1584–1595 (1999)

    Article  Google Scholar 

  53. Harris, F., McGwier, R., Egg, B.: A versatile multichannel filter bank with multiple channel bandwidths. In: Proc. IEEE Int. Conf. Cognitive Radio Oriented Wireless Networks and Communications, pp. 1–5. Cannes, France (2010)

    Google Scholar 

  54. Harris, F., Venosa, E., Chen, X., Renfors, M.: Cascade linear phase recursive half-band filters implement the most efficient digital down-converter. In: SDR’11 - Wireless Innovation Forum Conference on Communications Technologies and Software Defined Radio. Washington DC, USA (2011)

    Google Scholar 

  55. Haykin, S.: Adaptive Filter Theory, 3rd edn. Prentice Hall, NJ, USA (1996)

    Google Scholar 

  56. Hentschel, T.: Sample rate conversion in software configurable radios. Artech House, Norwood, MA, USA (2002)

    Google Scholar 

  57. Hirosaki, B.: An orthogonally multiplexed QAM system using the discrete Fourier transform. IEEE Trans. Commun. 29(7), pp. 982–989 (1981)

    Article  Google Scholar 

  58. Ho, Y.C., Staszewski, R.B., Muhammad, K., Hung, C.M., Leipold, D., Maggio, K.: Charge-domain signal processing of direct RF sampling mixer with discrete-time filter in Bluetooth and GSM receivers. EURASIP J. Wireless Comm. and Netw. 2006(3), 1–14 (2006)

    Article  Google Scholar 

  59. Hochwald, B., ten Brink, S.: Achieving near-capacity on a multiple-antenna channel. IEEE Trans. Commun. 51(3), 389–399 (2003)

    Article  Google Scholar 

  60. Hogenauer, E.: An economical class of digital filters for decimation and interpolation. IEEE Trans. Acoust., Speech, Signal Processing 29(2), 155–162 (1981)

    Google Scholar 

  61. Huang, Y., Ritcey, J.A.: Joint iterative channel estimation and decoding for bit-interleaved coded modulation over correlated fading channels. IEEE Trans. Wireless Commun. 4(5), 2549–2558 (2005)

    Article  MathSciNet  Google Scholar 

  62. Ihalainen, T., Ikhlef, A., Louveaux, J., Renfors, M.: Channel equalization for multi-antenna FBMC/OQAM receivers. IEEE Trans. Veh. Technol. 60(5), 2070–2085 (2011)

    Article  Google Scholar 

  63. Ihalainen, T., Viholainen, A., Stitz, T.H., Renfors, M.: Generation of filter bank-based multicarrier waveform using partial synthesis and time domain interpolation. IEEE Trans. Circuits Syst. II 57(7), 1767–1778 (2010)

    Article  MathSciNet  Google Scholar 

  64. Jelinek, F., Anderson, J.: Instrumentable tree encoding of information sources. IEEE Trans. Inform. Theory 17(1), 118–119 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  65. Jiang, T., Wu, Y.: An overview: Peak-to-average power ratio reduction techniques for OFDM signals. IEEE Trans. Broadcast. 54(2), 257–268 (2008)

    Article  Google Scholar 

  66. Juntti, M., Glisic, S.: Advanced CDMA for wireless communications. In: S.G. Glisic, P.A. Leppänen (eds.) Wireless Communications: TDMA Versus CDMA, chap. 4, pp. 447–490. Kluwer (1997)

    Google Scholar 

  67. Katz, A.: Linearization: reducing distortion in power amplifiers. IEEE Microwave Mag. 2(4), 37-49 (2001)

    Article  Google Scholar 

  68. Katz, A., Gray, R., Dorval, R.: Truly wideband linearization. IEEE Microwave Mag. (2009)

    Google Scholar 

  69. Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall, Englewood Cliffs, NJ, USA (1993)

    MATH  Google Scholar 

  70. Keehr, E., Hajimiri, A.: Equalization of third-order intermodulation products in wideband direct conversion receivers. IEEE J. Solid-State Circuits 43(12), 2853–2867 (2008)

    Article  Google Scholar 

  71. Keehr, E., Hajimiri, A.: Successive regeneration and adaptive cancellation of higher order intermodulation products in RF receivers. IEEE Trans. Microwave Theory Tech. 59(5), 1379–1396 (2011)

    Article  Google Scholar 

  72. Kenington, P.B.: Linearized transmitters: An enabling technology for software defined radio. IEEE Commun. Mag. 40(2), 156-162 (2002)

    Article  Google Scholar 

  73. Ketonen, J., Juntti, M., Cavallaro, J.: Performance-complexity comparison of receivers for a LTE MIMO-OFDM system. IEEE Trans. Signal Processing 58(6), 3360–3372 (2010)

    Article  MathSciNet  Google Scholar 

  74. Kim, W.-J., Stapleton, S.P., Kim, J.H., Edelman, C.: Digital predistortion linearizes wireless power amplifiers. IEEE Microwave Mag. 54–61 (2005)

    Google Scholar 

  75. Komninakis, C., Wesel, R.D.: Joint iterative channel estimation and decoding in flat correlated rayleigh fading. IEEE J. Select. Areas Commun. 19(9), 1706–1717 (2001)

    Article  Google Scholar 

  76. Le Floch, B., Alard, M., Berrou, C.: Coded orthogonal frequency division multiplex. Proc. IEEE 83(6), 982–996 (1995)

    Article  Google Scholar 

  77. Lélé, C., Javaudin, J.P., Legouable, R., Skrzypczak, A., Siohan, P.: Channel estimation methods for preamble-based OFDM/OQAM modulation. European Trans. Telecommun. 19(7), 741–750 (2008)

    Article  Google Scholar 

  78. Li, M., Bougart, B., Lopez, E., Bourdoux, A.: Selective spanning with fast enumeration: A near maximum-likelihood MIMO detector designed for parallel programmable baseband architectures. In: Proc. IEEE Int. Conf. Commun., pp. 737–741. Beijing, China (2008)

    Google Scholar 

  79. Liu, T., Boumaiza, S., Ghannouchi, F.: Augmented Hammerstein predistorter for linearization of broad-band wireless transmitters. IEEE Trans. Microwave Theory and Techniques 54(4) 1340–1349 (2006)

    Article  Google Scholar 

  80. Mak, P.I., U, S.P., Martins, R.: Transceiver architecture selection: Review, state-of-the-art survey and case study. IEEE Circuits Syst. Mag. 7(2), 6–25 (2007)

    Google Scholar 

  81. Martin, K.: Complex signal processing is not complex. IEEE Trans. Circuits Syst. I 51(9), 1823–1836 (2004)

    Article  MathSciNet  Google Scholar 

  82. McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions. Wiley, New York, USA (1997)

    MATH  Google Scholar 

  83. Meyr, H., Moeneclaey, M., Fechtel, S.A.: Digital Communication Receivers: Synchronization, Channel Estimation and Signal Processing. John Wiley and Sons, New York, USA (1998)

    Google Scholar 

  84. Miao, H., Juntti, M.: Space-time channel estimation and performance analysis for wireless MIMO-OFDM systems with spatial correlation. IEEE Trans. on Vehicular Technology 54(6), 2003–2016 (2005)

    Article  Google Scholar 

  85. Mirabbasi, S., Martin, K.: Classical and modern receiver architectures. IEEE Commun. Mag. 38(11), 132–139 (2000)

    Article  Google Scholar 

  86. Mitola, J.: The software radio architecture. IEEE Commun. Mag. 33(5), 26–38 (1995)

    Article  Google Scholar 

  87. Morgan, D., et al.: A generalized memory polynomial model for digital predistortion of RF power amplifiers. IEEE Trans. Signal Processing 54(10) 3852–3860 (2006)

    Article  Google Scholar 

  88. Muhammad, K., Staszewski, R., Leipold, D.: Digital RF processing: toward low-cost reconfigurable radios. Communications Magazine, IEEE 43(8), 105–113 (2005)

    Article  Google Scholar 

  89. Myllylä, M., Juntti, M., Cavallaro, J.: Architecture design and implementation of the increasing radius - list sphere detector algorithm. In: Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, pp. 553–556. Taipei, Taiwan (2009)

    Google Scholar 

  90. Myung, H.G., Junsung, L., Goodman, D.J.: Single carrier FDMA for uplink wireless transmission. IEEE Veh. Technol. Mag. 1(7), 30–38 (2006)

    Article  Google Scholar 

  91. Nee, R.V., Prasad, R.: FDM for Wireless Multimedia Communications. Arthec House, Boston (2000)

    Google Scholar 

  92. Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing. Prentice-Hall, Englewood Cliffs, NJ, USA (1989)

    MATH  Google Scholar 

  93. Parsons, J.D.: The Mobile Radio Propagation Channel, second edn. John Wiley & Sons (2001)

    Google Scholar 

  94. Petrovic, D., Rave, W., Fettweis, G.: Effects of phase noise on OFDM systems with and without PLL: Characterization and compensation. Communications, IEEE Transactions on 55(8), 1607–1616 (2007)

    Article  Google Scholar 

  95. Proakis, J.G.: Digital Communications, 4th edn. McGraw-Hill, New York (2000)

    Google Scholar 

  96. Pun, M.O., Morelli, M., Kuo, C.C.: Multi-Carrier Techniques for Broadband Wireless Communications. Imperial College Press (2007)

    Google Scholar 

  97. Rabiei, P., Namgoong, W., Al-Dhahir, N.: A non-iterative technique for phase noise ICI mitigation in packet-based OFDM systems. IEEE Trans. Signal Processing 58(11), 5945–5950 (2010)

    Article  MathSciNet  Google Scholar 

  98. Renfors, M., Saramäki, T.: Recursive Nth-band digital filters- Part II: Design of multistage decimators and interpolators. IEEE Trans. Circuits Syst. 34(1), 40–51 (1987)

    Article  Google Scholar 

  99. Ringset, V., Rustad, H., Schaich, F., Vandermot, J., Najar, M.: Performance of a filterbank multicarrier (FBMC) physical layer in the WiMAX context. In: Proc. Future Network & Mobile Summit. Florence, Italy (2010)

    Google Scholar 

  100. Rodriguez, S., Rusu, A., Zheng, L.-R., Ismail, M.: CMOS RF mixer with digitally enhanced IIP2. Electronics Letters 44, 121–122 (2008)

    Article  Google Scholar 

  101. Rutten, R., Breems, L., van Veldhoven, R.: Digital jitter-cancellation for narrowband signals. In: Proc. IEEE Int. Symp. Circuits and Systems, pp. 1444–1447 (2008)

    Google Scholar 

  102. Sahin, A., Arslan, H.: Edge windowing for OFDM based systems. IEEE Commun. Lett. 15(11), 1208–1211 (2011)

    Article  Google Scholar 

  103. Saltzberg, B.: Performance of an efficient parallel data transmission system. IEEE Trans. Commun. Technol. 15(6), 805–811 (1967)

    Article  Google Scholar 

  104. Saramäki, T., Ritoniemi, T.: A modified comb filter structure for decimation. In: Proc. IEEE Int. Symp. Circuits and Systems, pp. 2353–2356. Hong-Kong (1997)

    Google Scholar 

  105. Sari, H., Karim, G., Jeanclaude, I.: Transmission techniques for digital terrestrial TV broadcasting. IEEE Commun. Mag. 33(2), 100–109 (1995)

    Article  Google Scholar 

  106. Scharf, L.L.: Statistical Signal Processing: Detection, Estimation, and Time Series Analysis. Addison-Wesley, Reading, MA, USA (1991)

    MATH  Google Scholar 

  107. Schlegel, C., Prez, L.: Trellis and Turbo Coding. Wiley IEEE Press Publication, Piscataway, USA (2004)

    Book  Google Scholar 

  108. Shaat, M., Bader, F.: Computationally efficient power allocation algorithm in multicarrier-based cognitive radio networks: OFDM and FBMC systems. EURASIP J. Advances Signal Processing 2010, 1–13 (2010)

    Article  Google Scholar 

  109. Shahed, A., Valkama, M., Renfors, M.: Adaptive compensation of nonlinear distortion in multicarrier direct-conversion receivers. In: Proc. IEEE Radio Wireless Conf. (RAWCON’04), pp. 35–38. Atlanta, GA, USA (2004)

    Google Scholar 

  110. Siohan, P., Siclet, C., Lacaille, N.: Analysis and design of OFDM-OQAM systems based on filterbank theory. IEEE Trans. Signal Processing 50(5), 1170–1183 (2002)

    Article  Google Scholar 

  111. Studer, C., Burg, A., Bolcskei, H.: Soft-output sphere decoding: algorithms and VLSI implementation. IEEE J. Select. Areas Commun. 26(2), 290–300 (2008)

    Article  Google Scholar 

  112. Syrjälä, V., Valkama, M.: Sampling jitter cancellation in direct-sampling radio. In: Proc. IEEE Wireless Commun. and Networking Conf., pp. 1–6 (2010)

    Google Scholar 

  113. Syrjälä, V., Valkama, M.: Analysis and mitigation of phase noise and sampling jitter in OFDM radio receivers. Int. J. Microwave and Wireless Technologies 2(4), 193–202 (2010)

    Article  Google Scholar 

  114. Tandur, D., Moonen, M.: Joint adaptive compensation of transmitter and receiver IQ imbalance under carrier frequency offset in OFDM-based systems. IEEE Trans. Signal Processing 55(11), 5246–5252 (2007)

    Article  MathSciNet  Google Scholar 

  115. Tarighat, A., Bagheri, R., Sayed, A.: Compensation schemes and performance analysis of IQ imbalances in OFDM receivers. IEEE Trans. Signal Processing 53(8), 3257–3268 (2005)

    Article  MathSciNet  Google Scholar 

  116. Tomba, L.: On the effect of Wiener phase noise in OFDM systems. IEEE Trans. Commun. 46(5), 580–583 (1998)

    Article  Google Scholar 

  117. Toskala, A., Holma, H.: LTE for UMTS - OFDMA and SC-FDMA Based Radio Access. John Wiley and Sons, New York, USA (2009)

    Google Scholar 

  118. Tse, D., Viswanath, P.: Fundamentals of Wireless Communication. Cambridge University Press, Cambridge, UK (2005)

    Book  MATH  Google Scholar 

  119. Tsui, J.: Digital Techniques for Wideband Receivers. Artech House, Norwood, MA, USA (1995)

    Google Scholar 

  120. Tüchler, M., Singer, A.C., Koetter, R.: Minimum mean squared error equalisation using a priori information. IEEE Trans. Signal Processing 50(3), 673–683 (2002)

    Article  Google Scholar 

  121. Väänänen, O., Vankka, J., Halonen, K.: Simple algorithm for peak windowing and its application in GSM, EDGE and WCDMA systems. IEE Proc. – Commun. 152(3), 357–362 (2005)

    Google Scholar 

  122. Valkama, M.: RF impairment compensation for future radio systems. In: G. Hueber and R.B. Staszewski, Eds., Multi-Mode/Multi-Band RF Transceivers for Wireless Communications: Advanced Techniques, Architectures, and Trends. Wiley/IEEE Press, U.K. (2010)

    Google Scholar 

  123. Valkama, M., Pirskanen, J., Renfors, M.: Signal processing challenges for applying software radio principles in future wireless terminals: An overview. Int. Journal of Communication Systems, Wiley 15, 741–769 (2002)

    MATH  Google Scholar 

  124. Valkama, M., Renfors, M., Koivunen, V.: Advanced methods for I/Q imbalance compensation in communication receivers. IEEE Trans. Signal Processing 49(10), 2335–2344 (2001)

    Article  Google Scholar 

  125. Valkama, M., Shahed, A., Anttila, L., Renfors, M.: Advanced digital signal processing techniques for compensation of nonlinear distortion in wideband multicarrier radio receivers. IEEE Trans. Microwave Theory and Techniques 54, 2356–2366 (2006)

    Article  Google Scholar 

  126. Valkama, M., Springer, A., Hueber, G.: Digital signal processing for reducing the effects of RF imperfections in radio devices – An overview. In: Proc. IEEE Int. Symp. Circuits and Systems, pp. 813–816 (2010)

    Google Scholar 

  127. Vallet, R., Taieb, K.H.: Fraction spaced multi-carrier modulation. Wireless Pers. Commun., Kluwer 2, 97–103 (1995)

    Google Scholar 

  128. Vangelista, L., Benvenuto, N., Tomasin, S., Nokes, C., Stott, J., Filippi, A., Vlot, M., Mignone, V., Morello, A.: Key technologies for next-generation terrestrial digital television standard DVB-T2. IEEE Commun. Mag. 47(10), 146–153 (2009)

    Article  Google Scholar 

  129. Vaughan, R., Scott, N., White, D.: The theory of bandpass sampling. IEEE Trans. Signal Processing 39(9), 1973–1984 (1991)

    Article  Google Scholar 

  130. Verdú, S.: Multiuser Detection. Cambridge University Press, Cambridge, UK (1998)

    MATH  Google Scholar 

  131. Viholainen, A., Ihalainen, T., Stitz, T.H., Renfors, M., Bellanger, M.: Prototype filter design for filter bank based multicarrier transmission. In: Proc. European Sign. Proc. Conf. Glasgow, Scotland (2009)

    Google Scholar 

  132. Weinsten, S.B., Ebert, P.M.: Data transmission by frequency division multiplexing using the discrete Fourier transform. IEEE Trans. Commun. Technol. 19(5), 628–634 (1971)

    Article  Google Scholar 

  133. Weiss, T.A., Hillenbrand, J., Krohn, A., Jondral, F.K.: Mutual interference in OFDM-based spectrum pooling systems. In: Proc. IEEE Veh. Technol. Conf. Spring, pp. 1872–1877. Dallas, TX, USA (2004)

    Google Scholar 

  134. Wolniansky, P.W., Foschini, G.J., Golden, G.D., Valenzuela, R.A.: V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel. In: International Symposium on Signals, Systems, and Electronics (ISSSE), pp. 295–300. Pisa, Italy (1998)

    Google Scholar 

  135. Wong, K., Tsui, C., Cheng, R.K., Mow, W.: A VLSI architecture of a K-best lattice decoding algorithm for MIMO channels. In: Proc. IEEE Int. Symp. Circuits and Systems, vol. 3, pp. 273–276. Scottsdale, AZ (2002)

    Google Scholar 

  136. Wu, S., Bar-Ness, Y.: OFDM systems in the presence of phase noise: consequences and solutions. IEEE Trans. Commun. 52(11), 1988–1996 (2004)

    Article  Google Scholar 

  137. Xie, Y., Georghiades, C.N., Li, Q.: A novel low complexity detector for MIMO system. In: Proc. Annual Asilomar Conf. Signals, Syst., Comp., vol. 1, pp. 208–212 (2004)

    Google Scholar 

  138. Ylioinas, J., Juntti, M.: Iterative joint detection, decoding, and channel estimation in turbo coded MIMO-OFDM. IEEE Trans. Veh. Technol. 58(4), 1784–1796 (2009). DOI 10.1109/TVT.2008.2005724

    Article  Google Scholar 

  139. Ylioinas, J., Raghavendra, M.R., Juntti, M.: Avoiding matrix inversion in DD SAGE channel estimation in MIMO-OFDM with M-QAM. In: Proc. IEEE Veh. Technol. Conf., pp. 1–5. Anchorage, USA (2009)

    Google Scholar 

  140. Yuan, Z., Wyglinski, A.: On sidelobe suppression for multicarrier-based transmission in dynamic spectrum access networks. IEEE Trans. Veh. Technol. 59(4), 1998–2006 (2010)

    Article  Google Scholar 

  141. Zhang, H., LeRuyet, D., Roviras, D., Medjahdi, Y., Sun, H.: Spectral efficiency comparison of OFDM/FBMC for uplink cognitive radio networks. EURASIP J. Advances Signal Processing 2010, 1–14 (2010)

    Google Scholar 

  142. Zhou G.T., et al.: On the baseband representation of a bandpass nonlinearity. IEEE Trans. Signal Processing 53(8) 2953-2957 (2005)

    Article  Google Scholar 

  143. Zhou, D., DeBrunner, V.E.: Novel adaptive nonlinear predistorters based on the direct learning algorithm. IEEE Trans. Signal Processing 55(1) 120–133 (2007)

    Article  MathSciNet  Google Scholar 

  144. Zhu, Y., Letaief, K.: Single carrier frequency domain equalization with time domain noise prediction for wideband wireless communications. IEEE Trans. Wireless Commun. 5(12), 3548–3557 (2006)

    Article  Google Scholar 

  145. Zou, Q., Tarighat, A., Sayed, A.: Compensation of phase noise in OFDM wireless systems. IEEE Trans. Signal Processing 55(11), 5407–5424 (2007)

    Article  MathSciNet  Google Scholar 

  146. Zou, Y., Valkama, M., Renfors, M.: Digital compensation of I/Q imbalance effects in space-time coded transmit diversity systems. IEEE Trans. Signal Processing 56(6), 2496–2508 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markku Juntti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Juntti, M., Renfors, M., Valkama, M. (2013). Signal Processing for Wireless Transceivers. In: Bhattacharyya, S., Deprettere, E., Leupers, R., Takala, J. (eds) Handbook of Signal Processing Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6859-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6859-2_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6858-5

  • Online ISBN: 978-1-4614-6859-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics