Low-Power Wireless Sensor Network Platforms

  • Jukka Suhonen
  • Mikko Kohvakka
  • Ville Kaseva
  • Timo D. Hämäläinen
  • Marko Hännikäinen
Chapter

Abstract

Wireless sensor network (WSN) is a technology comprising even thousands of autonomic and self-organizing nodes that combine environmental sensing, data processing, and wireless multihop ad-hoc networking. The features of WSNs enable monitoring, object tracking, and control functionality. The potential applications include environmental and condition monitoring, home automation, security and alarm systems, industrial monitoring and control, military reconnaissance and targeting, and interactive games. This chapter describes low-power WSN as a platform for signal processing by presenting the WSN services that can be used as building blocks for the applications. It explains the implications of resource constraints and expected performance in terms of throughput, reliability and latency.

Keywords

Migration Acidity 

References

  1. 1.
    Akyildiz, I.F., Kasimoglu, I.H.: Wireless sensor and actor networks: Research challenges. Elsevier Ad Hoc Networks 2(4), 351–367 (2004)CrossRefGoogle Scholar
  2. 2.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Elsevier Computer Networks 38(4), 393–422 (2002)CrossRefGoogle Scholar
  3. 3.
    Baunach, M., Kolla, R., Mhlberger, C.: Beyond theory: Development of a real world localization application as low power wsn. In: Proc. 32nd IEEE Conference on Local Computer Networks (LCN’07), pp. 872–884. Dublin, Ireland (2007)Google Scholar
  4. 4.
    Buettner, M., Yee, G., Anderson, E., Han, R.: X-MAC: A short preamble MAC protocol for duty-cycled wireless sensor networks. In: Proc. 4th ACM Conf. Embedded Networked Sensor Systems (SenSys’06), pp. 307–320. Boulder, Colorado, USA (2006)Google Scholar
  5. 5.
    Bulusu, N., Heidemann, J., Estrin, D.: GPS-less low-cost outdoor localization for very small devices. Personal Communications, IEEE [see also IEEE Wireless Communications] 7(5), 28–34 (2000)Google Scholar
  6. 6.
    Colvin, A.: CSMA with collision avoidance. Computer Communications 6(5), 227–235 (1983)CrossRefGoogle Scholar
  7. 7.
    Crossbow Technology, Inc.: Stargate X-Scale processor platform. Available: http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/6020-0049-01_B_STARGATE.pdf (2004)
  8. 8.
    Elnahrawy, E., Li, X., Martin, R.P.: The limits of localization using signal strength: a comparative study. In: Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004. 2004 First Annual IEEE Communications Society Conference on, pp. 406–414 (2004)Google Scholar
  9. 9.
    Enz, C.C., El-Hoiydi, A., Decotignie, J.D., Peiris, V.: WiseNET: An ultralow-power wireless sensor network solution. Computer 37(8), 62–70 (2004)CrossRefGoogle Scholar
  10. 10.
    Fox, V., Hightower, J., Liao, L., Schulz, D., Borriello, G.: Bayesian filtering for location estimation. Pervasive Computing, IEEE 2(3), 24–33 (July-Sept. 2003). DOI 10.1109/MPRV.2003.1228524Google Scholar
  11. 11.
    Ganeriwal, S., Kumar, R., Srivastava, M.B.: Timing-sync protocol for sensor networks. In: SenSys ’03: Proceedings of the 1st international conference on Embedded networked sensor systems, pp. 138–149. ACM, New York, NY, USA (2003). DOI http://doi.acm.org/10.1145/958491.958508
  12. 12.
    Greunen, J.V., Rabaey, J.: Lightweight time synchronization for sensor networks. In: WSNA ’03: Proceedings of the 2nd ACM international conference on Wireless sensor networks and applications, pp. 11–19. ACM, New York, NY, USA (2003). DOI http://doi.acm.org/10.1145/941350.941353
  13. 13.
    Guo, C., Zhong, L., Rabaey, J.: Low power distributed MAC for ad hoc sensor radio networks. In: Global Telecommunications Conf. (GLOBECOM’01), vol. 5, pp. 2944–2948. San Antonio, TX, USA (2001)Google Scholar
  14. 14.
    Hightower, J., Borriello, G.: Location systems for ubiquitous computing. Computer 34(8), 57–66 (2001)CrossRefGoogle Scholar
  15. 15.
    Hightower, J., Brumitt, B., Borriello, G.: The location stack: a layered model for location in ubiquitous computing. Mobile Computing Systems and Applications, 2002. Proceedings Fourth IEEE Workshop on pp. 22–28 (2002). DOI  10.1109/MCSA.2002.1017482
  16. 16.
    Hill, J., Horton, M., Kling, R., Krishnamurthy, L.: Wireless sensor networks: The platforms enabling wireless sensor networks. Communications of the ACM 6(47), 41–46 (2004)CrossRefGoogle Scholar
  17. 17.
    Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architecture directions for networked sensors. In: Proc. 9th ACM Int’l Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS’00), pp. 94–103. Cambridge, MA, USA (2000)Google Scholar
  18. 18.
    Hodes, T.D., Katz, R.H., Servan-Schreiber, E., Rowe, L.: Composable ad-hoc mobile services for universal interaction. In: MobiCom ’97: Proceedings of the 3rd annual ACM/IEEE international conference on Mobile computing and networking, pp. 1–12. ACM, New York, NY, USA (1997). DOI http://doi.acm.org/10.1145/262116.262121
  19. 19.
    IEEE 802.15.4: IEEE Standard for Information Technology—Telecommunications and Information Exchange Between Systems—Local and Metropolitan Area Networks—Specific Requirements—Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPAN) (2006)Google Scholar
  20. 20.
    ISA: ISA100.11a release 1. Available: http://www.isa.org/source/ISA100.11a_Release1_Status.ppt (2007)
  21. 21.
    Al Karaki, J.N., Kamal, A.E.: Routing techniques in wireless sensor networks: A survey. IEEE Wireless Communications 11(6), 6–28 (2004)CrossRefGoogle Scholar
  22. 22.
    Karl, H., Willig, A.: Protocols and Architectures for Wireless Sensor Networks. John Wiley & Sons Ltd (2005)Google Scholar
  23. 23.
    Karp, B., Kung, H.T.: GPSR: Greedy perimeter stateless routing for wireless networks. In: Proc. 6th annual Int’l Conf. on mobile computing and networking (MobiCom’00), pp. 243–254. Boston, MA, USA (2000)Google Scholar
  24. 24.
    Kaseva, V.A., Kohvakka, M., Kuorilehto, M., Hännikäinen, M., Hämäläinen, T.D.: A wireless sensor network for RF-based indoor localization. EURASIP Journal on Advances in Signal Processing (2008). DOI  10.1155/2008/731835 Google Scholar
  25. 25.
    Kohvakka, M.: Medium access control and hardware prototype designs for low-energy wireless sensor networks. Ph.D. thesis, Tampere University of Technology, Tampere, Finland (2009)Google Scholar
  26. 26.
    Kulik, J., Heinzelman, W., Balakrishnan, H.: Negotiation-based protocols for disseminating information in wireless sensor networks. Kluwer Wireless Networks 8(2), 169–185 (2002)MATHCrossRefGoogle Scholar
  27. 27.
    Kuorilehto, M., Kohvakka, M., Suhonen, J., Hmlinen, P., Hnnikinen, M., Hmlinen, T.D.: Ultra-Low Energy Wireless Sensor Networks in Practice - Theory, Realization and Deployment. John Wiley & Sons Ltd (2007)CrossRefGoogle Scholar
  28. 28.
    Li, M.Q., Rus, M.D.: Global clock synchronization in sensor networks. IEEE Trans. Comput. 55(2), 214–226 (2006). DOI http://dx.doi.org/10.1109/TC.2006.25 Google Scholar
  29. 29.
    Liu, J., Zhao, F., Petrovic, D.: Information-directed routing in ad hoc sensor networks. IEEE Journal on Selected Areas in Communications 23(4), 851–861 (2005)CrossRefGoogle Scholar
  30. 30.
    Lorincz, K., Welsh, M.: MoteTrack: A robust, decentralized approach to RF-based location tracking. In: In Proceedings of the International Workshop on Location- and Context-Awareness (LoCA 2005) at Pervasive 2005. Oberpfaffenhofen, Germany (2005)Google Scholar
  31. 31.
    Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: The design of an acquisitional query processor for sensor networks. In: Proc. ACM Int’l Conf. on Management of Data (SIGMOD’03), pp. 491–502. San Diego, CA, USA (2003)Google Scholar
  32. 32.
    Maróti, M., Kusy, B., Simon, G., Ákos Lédeczi: The flooding time synchronization protocol. In: SenSys ’04: Proceedings of the 2nd international conference on Embedded networked sensor systems, pp. 39–49. ACM, New York, NY, USA (2004). DOI http://doi.acm.org/10.1145/1031495.1031501
  33. 33.
    Min, R., Bhardwaj, M., Cho, S.H., Ickes, N., Shih, E., Sinha, A., Wang, A., Chandrakasan, A.: Energy-centric enabling technologies for wireless sensor networks. IEEE Wireless Communications 9(4), 28–39 (2002)CrossRefGoogle Scholar
  34. 34.
    Niculescu, D.: Communication paradigms for sensor networks. IEEE Communications Magazine 43(3), 116–122 (2005)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Niculescu, D., Nath, B.: Trajectory based forwarding and its applications. In: Proc. 9th annual Int’l Conf. on Mobile computing and networking (MobiCom’03), pp. 260–272. San Diego, CA, USA (2003)Google Scholar
  36. 36.
    Norair, J.P.: Introduction to DASH7 technologies. Tech. rep., DASH7 Technology Working Group (2009)Google Scholar
  37. 37.
    Patwari, N., Ash, J.N., Kyperountas, S., Hero III, A.O., Moses, R.L., Correal, N.S.: Locating the nodes: cooperative localization in wireless sensor networks. Signal Processing Magazine, IEEE 22(4), 54–69 (2005)CrossRefGoogle Scholar
  38. 38.
    Ping, S.: Delay measurement time synchronization for wireless sensor networks. Tech. Rep. IRB-TR-03-013, Intel Research Berkeley Lab (2003)Google Scholar
  39. 39.
    Pitcher, G.: If the cap fits New Electronics pp. 25–26 (2006)Google Scholar
  40. 40.
    Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor networks. In: Proc. 2nd Internation Conf. on Embedded Networked Sensor Systems (Sensys’04), pp. 95–107. Baltimore, MD, USA (2004)Google Scholar
  41. 41.
    Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The cricket location-support system. In: MobiCom ’00: Proceedings of the 6th annual international conference on Mobile computing and networking, pp. 32–43. ACM Press, New York, NY, USA (2000)Google Scholar
  42. 42.
    Priyantha, N.B., Miu, A.K.L., Balakrishnan, H., Teller, S.: The cricket compass for context-aware mobile applications. In: MobiCom ’01: Proceedings of the 7th annual international conference on Mobile computing and networking, pp. 1–14. ACM Press, New York, NY, USA (2001)Google Scholar
  43. 43.
    Reason, J.M., Rabaey, J.M.: A study of energy consumption and reliability in a multi-hop sensor network. ACM SIGMOBILE Mobile Computing and Communications Review 8(1), 84–97 (2004)CrossRefGoogle Scholar
  44. 44.
    Roberts, L.: ALOHA packet system with and without slots and capture. ACM SIGCOMM Computer Communication Review 5(2), 28–42 (1975)CrossRefGoogle Scholar
  45. 45.
    Roundy, S., Wright, P.K., Rabaey, J.: A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications 26(11), 1131–1144 (2003)CrossRefGoogle Scholar
  46. 46.
    Rmer, K., Kasten, O., Mattern, F.: Middleware challenges for wireless sensor networks. ACM SIGMOBILE Mobile Computing and Communications Review 6(4), 59–61 (2002)CrossRefGoogle Scholar
  47. 47.
    Sichitiu, M., Veerarittiphan, C.: Simple, accurate time synchronization for wireless sensor networks. In: WCNC ’03: Proceedings of the IEEE conference on Wireless Communications and Networking, vol. 2, pp. 1266–1273 (2003)Google Scholar
  48. 48.
    Stallings, W.: Operating Systems Internals and Design Principles, 5 edn. Prentice-Hall (2005)Google Scholar
  49. 49.
    Su, W., Akyildiz, I.F.: Time-diffusion synchronization protocol for wireless sensor networks. IEEE/ACM Trans. Netw. 13(2), 384–397 (2005). DOI http://dx.doi.org/10.1109/TNET.2004.842228
  50. 50.
    Suhonen, J., Hmlinen, T.D., Hnnikinen, M.: Availability and end-to-end reliability in low duty cycle multihop wireless sensor networks. Sensors 9(3), 2088–2116 (2009)CrossRefGoogle Scholar
  51. 51.
    Tian He, Stankovic, J.A., Lu, C., Abdelzaher, T.: SPEED: A stateless protocol for real-time communication in sensor networks. In: Proc. 23rd Int’l Conf. on Distributed Computing Systems, pp. 46–55. Providence, RI, USA (2003)Google Scholar
  52. 52.
    van Dam, T., Langendoen, K.: An adaptive energy-efficient MAC protocol for wireless sensor networks. In: Proc. 1st Int’l Conf. on Embedded Networked Sensor Systems (Sensys’03), pp. 171–180. Los Angeles, CA, USA (2003)Google Scholar
  53. 53.
    Wan, C.Y., Campbell, A.T., Krishnamurthy, L.: Pump-slowly, fetch-quickly (PSFQ): A reliable transport protocol for sensor networks. IEEE Journal on Selected Areas in Communications 23(4), 862–872 (2005)CrossRefGoogle Scholar
  54. 54.
    Want, R., Hopper, A., Falcao, V., Gibbons, J.: The active badge location system. ACM Transactions on Information Systems 10(1), 91–102 (1992)CrossRefGoogle Scholar
  55. 55.
    Wolf, M., Kress, D.: Short-range wireless infrared transmission: the link budget compared to RF. IEEE Wireless Communications Magazine 10(2), 8–14 (2003)CrossRefGoogle Scholar
  56. 56.
    Ye, F., Zhong, G., Lu, S., Zhang, L.: GRAdient broadcast: a robust data delivery protocol for large scale sensor networks. Kluwer Wireless Networks 11(3), 285–298 (2005)CrossRefGoogle Scholar
  57. 57.
    Ye, W., Heidemann, J., Estrin, D.: An energy-efficient MAC protocol for wireless sensor networks. In: Proc. 21st Annual Joint Conf. of the IEEE Computer and Communications Societies (INFOCOM’02), vol. 3, pp. 1567–1576. New York, NY, USA (2002)Google Scholar
  58. 58.
    Yoon, S.: Power management in wireless sensor networks. North Carolina State University, PhD Thesis (2007)Google Scholar
  59. 59.
    Youssef, M.A., Agrawala, A., Shankar, A.U.: WLAN location determination via clustering and probability distributions. In: Pervasive Computing and Communications, 2003. (PerCom 2003). Proceedings of the First IEEE International Conference on, pp. 143–150 (2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Jukka Suhonen
    • 1
  • Mikko Kohvakka
    • 2
  • Ville Kaseva
    • 1
  • Timo D. Hämäläinen
    • 1
  • Marko Hännikäinen
    • 1
  1. 1.Tampere University of TechnologyTampereFinland
  2. 2.Suntrica LtdSaloFinland

Personalised recommendations