Skip to main content

Structural Imaging in Autism

  • Chapter
  • First Online:
Imaging the Brain in Autism

Abstract

Advances in magnetic resonance imaging (MRI) have enabled an explosive phase of macroscopic structural brain research in autism. This chapter reviews structural MRI findings from investigations of brain volume and cortical thickness from early childhood into adulthood. Global and regional brain differences are described, as well as reported gender effects. In many individuals with autism, early total and regional brain overgrowth is found, followed by “normalization” during childhood and adolescence. Regional cortical decline extends through adolescence and into adulthood in some individuals. At all stages of development, total brain changes and functional differences between individuals are important for the interpretation of structural findings. The improvement of structural MRI techniques and combination of multimodal imaging analysis will elucidate the neurobiological correlates of macroscopic findings in the disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abell F, Krams M, Ashburner J, Passingham R, Friston K, Frackowiak R, Happe F, Frith C, Frith U (1999) The neuroanatomy of autism: a voxel-based whole brain analysis of structural scans. Neuroreport 10:1647–1651

    PubMed  CAS  Google Scholar 

  • Alexander AL, Lee JE, Lazar M, Boudos R, DuBray MB, Oakes TR, Miller JN, Lu J, Jeong EK, McMahon WM, Bigler ED, Lainhart JE (2007) Diffusion tensor imaging of the corpus callosum in Autism. Neuroimage 34:61–73

    PubMed  Google Scholar 

  • Aylward EH, Minshew NJ, Field K, Sparks BF, Singh N (2002) Effects of age on brain volume and head circumference in autism. Neurology 59:175–183

    PubMed  CAS  Google Scholar 

  • Bauman ML, Kemper TL (1994) Neurobiology of autism. Johns Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Beacher FD, Minati L, Baron-Cohen S, Lombardo MV, Lai MC, Gray MA, Harrison NA, Critchley HD (2012) Autism attenuates sex differences in brain structure: a combined voxel-based morphometry and diffusion tensor imaging study. AJNR Am J Neuroradiol 33:83–89

    PubMed  CAS  Google Scholar 

  • Bigler ED, Tate DF, Neeley ES, Wolfson LJ, Miller MJ, Rice SA, Cleavinger H, Anderson C, Coon H, Ozonoff S, Johnson M, Dinh E, Lu J, Mc Mahon W, Lainhart JE (2003) Temporal lobe, autism, and macrocephaly. AJNR Am J Neuroradiol 24:2066–2076

    PubMed  Google Scholar 

  • Bloss CS, Courchesne E (2007) MRI neuroanatomy in young girls with autism: a preliminary study. J Am Acad Child Adolesc Psychiatry 46:515–523

    PubMed  Google Scholar 

  • Boddaert N, Chabane N, Gervais H, Good CD, Bourgeois M, Plumet MH, Barthelemy C, Mouren MC, Artiges E, Samson Y, Brunelle F, Frackowiak RS, Zilbovicius M (2004) Superior temporal sulcus anatomical abnormalities in childhood autism: a voxel-based morphometry MRI study. Neuroimage 23:364–369

    PubMed  CAS  Google Scholar 

  • Boger-Megiddo I, Shaw DWW, Friedman SD, Sparks B-F, Artru AA, Giedd JN, Dawson G, Dager SR (2006) Corpus callosum morphometrics in young children with autism spectrum disorder. J Autism Dev Disord 36:733–739

    PubMed  Google Scholar 

  • Calderoni S, Retico A, Biagi L, Tancredi R, Muratori F, Tosetti M (2012) Female children with autism spectrum disorder: an insight from mass-univariate and pattern classification analyses. Neuroimage 59:1013–1022

    PubMed  Google Scholar 

  • Carper RA, Courchesne E (2005) Localized enlargement of the frontal cortex in early autism. Biol Psychiatry 57:126–133

    PubMed  Google Scholar 

  • Carper RA, Moses P, Tigue ZD, Courchesne E (2002) Cerebral lobes in autism: early hyperplasia and abnormal age effects. Neuroimage 16:1038–1051

    PubMed  Google Scholar 

  • Casanova MF, El-Baz A, Mott M, Mannheim G, Hassan H, Fahmi R, Giedd J, Rumsey JM, Switala AE, Farag A (2009) Reduced gyral window and corpus callosum size in autism: possible macroscopic correlates of a minicolumnopathy. J Autism Dev Disord 39:751–764

    PubMed  Google Scholar 

  • Casanova MF, El-Baz A, Elnakib A, Switala AE, Williams EL, Williams DL, Minshew NJ, Conturo TE (2011) Quantitative analysis of the shape of the corpus callosum in patients with autism and comparison individuals. Autism 15:223–238

    PubMed  Google Scholar 

  • Cauda F, Geda E, Sacco K, D’Agata F, Duca S, Geminiani G, Keller R (2011) Grey matter abnormality in autism spectrum disorder: an activation likelihood estimation meta-analysis study. J Neurol Neurosurg Psychiatry 82:1304–1313

    PubMed  Google Scholar 

  • Caviness VS, Kennedy DN, Richelme C, Rademacher J, Filipek PA (1996) The human brain age 7-11 years: a volumetric analysis based on magnetic resonance images. Cereb Cortex 6:1047–3211

    Google Scholar 

  • Chung MK, Dalton KM, Alexander AL, Davidson RJ (2004) Less white matter concentration in autism: 2D voxel-based morphometry. Neuroimage 23:242–251

    PubMed  Google Scholar 

  • Chung MK, Robbins SM, Dalton KM, Davidson RJ, Alexander AL, Evans AC (2005) Cortical thickness analysis in autism with heat kernel smoothing. Neuroimage 25:1256–1265

    PubMed  Google Scholar 

  • Cleavinger HB, Bigler ED, Johnson JL, Lu J, McMahon W, Lainhart JE (2008) Quantitative magnetic resonance image analysis of the cerebellum in macrocephalic and normocephalic children and adults with autism. J Int Neuropsychol Soc 14:401–413

    PubMed  Google Scholar 

  • Courchesne E, Yeung-Courchesne R, Press GA, Hesselink JR, Jernigan TL (1988) Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med 318:1349–1354

    PubMed  CAS  Google Scholar 

  • Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD, Chisum HJ, Moses P, Pierce K, Lord C, Lincoln AJ, Pizzo S, Schreibman LE, Haas RH, Akshoomoff NA, Courchesne RY (2001) Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 57:245–254

    PubMed  CAS  Google Scholar 

  • Courchesne E, Carper R, Akshoomoff N (2003) Evidence of brain overgrowth in the first year of life in autism. J Am Med Assoc 290:337–344

    Google Scholar 

  • Courchesne E, Redcay E, Kennedy DP (2004) The autistic brain: birth through adulthood. Curr Opin Neurol 17:489–496

    PubMed  Google Scholar 

  • Courchesne E, Campbell K, Solso S (2011) Brain growth across the life span in autism: age-specific changes in anatomical pathology. Brain Res 1380:138–145

    PubMed  CAS  Google Scholar 

  • Craig MC, Zaman SH, Daly EM, Cutter WJ, Robertson DM, Hallahan B, Toal F, Reed S, Ambikapathy A, Brammer M, Murphy CM, Murphy DG (2007) Women with autistic-spectrum disorder: magnetic resonance imaging study of brain anatomy. Br J Psychiatry 191:224–228

    PubMed  Google Scholar 

  • Dager SR, Wang L, Friedman SD, Shaw DW, Constantino JN, Artru AA, Dawson G, Csernansky JG (2007) Shape mapping of the hippocampus in young children with autism spectrum disorder. AJNR Am J Neuroradiol 28:672–677

    PubMed  CAS  Google Scholar 

  • Damarla SR, Keller TA, Kana RK, Cherkassky VL, Williams DL, Minshew NJ, Just MA (2010) Cortical underconnectivity coupled with preserved visuospatial cognition in autism: evidence from an fMRI study of an embedded figures task. Autism Res 3:273–279

    PubMed  Google Scholar 

  • Deoni SC, Mercure E, Blasi A, Gasston D, Thomson A, Johnson M, Williams SC, Murphy DG (2011) Mapping infant brain myelination with magnetic resonance imaging. J Neurosci 31:784–791

    PubMed  CAS  Google Scholar 

  • Duerden EG, Mak-Fan KM, Taylor MJ, Roberts SW (2012) Regional differences in grey and white matter in children and adults with autism spectrum disorders: an activation likelihood estimate (ALE) meta-analysis. Autism Res 5:49–66

    PubMed  Google Scholar 

  • Dziobek I, Bahnemann M, Convit A, Heekeren HR (2010) The role of the fusiform-amygdala system in the pathophysiology of autism. Arch Gen Psychiatry 67:397–405

    PubMed  Google Scholar 

  • Ecker C, Suckling J, Deoni SCL, Lombardo MV, Bullmore ET, Baron-Cohen S, Catani M, Jezzard P, Barnes A, Bailey AJ, Williams SCR, Murphy DGM (2012) Brain anatomy and its relationship to behavior in adults with autism spectrum disorder: a multicenter magnetic resonance imaging study. Arch Gen Psychiatry 69:195–209

    PubMed  Google Scholar 

  • Elia M, Ferri R, Musumeci SA, Panerai S, Bottitta M, Scuderi C (2000) Clinical correlates of brain morphometric features of subjects with low-functioning autistic disorder. J Child Neurol 15:504–508

    PubMed  CAS  Google Scholar 

  • Estes A, Shaw DWW, Sparks B-F, Friedman SD, Giedd JN, Dawson G, Bryan M, Dager SR (2011) Basal ganglia morphometry and repetitive behavior in young children with autism spectrum disorder. Autism Res 4:212–220

    PubMed  Google Scholar 

  • Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, Chauhan A, Chauhan V, Dager SR, Dickson PE, Estes AM, Goldowitz D, Heck DH, Kemper TL, King BH, Martin LA, Millen KJ, Mittleman G, Mosconi MW, Persico AM, Sweeney JA, Webb SJ, Welsh JP (2012) Consensus paper: pathological role of the cerebellum in autism. Cerebellum 28:28

    Google Scholar 

  • Frazier TW, Hardan AY (2009) A meta-analysis of the corpus callosum in autism. Biol Psychiatry 66:935–941

    PubMed  Google Scholar 

  • Frazier TW, Keshavan MS, Minshew NJ, Hardan AY (2012) A two-year longitudinal MRI study of the corpus callosum in autism. J Autism Dev Disord 42(11):2312–2322

    PubMed  Google Scholar 

  • Freitag CM, Luders E, Hulst HE, Narr KL, Thompson PM, Toga AW, Krick C, Konrad C (2009) Total brain volume and corpus callosum size in medication-naive adolescents and young adults with autism spectrum disorder. Biol Psychiatry 66:316–319

    PubMed  Google Scholar 

  • Gale CR, O’Callaghan FJ, Godfrey KM, Law CM, Martyn CN (2004) Critical periods of brain growth and cognitive function in children. Brain 127:321–329

    PubMed  Google Scholar 

  • Giedd JN (2004) Structural magnetic resonance imaging of the adolescent brain. Ann N Y Acad Sci 1021:77–85

    PubMed  Google Scholar 

  • Giedd JN, Blumenthal J, Jeffries NO, Rajapakse JC, Vaituzis AC, Liu H, Berry YC, Tobin M, Nelson J, Castellanos FX (1999) Development of the human corpus callosum during childhood and adolescence: a longitudinal MRI study. Prog Neuropsychopharmacol Biol Psychiatry 23:571–588

    PubMed  CAS  Google Scholar 

  • Giedd JN, Clasen LS, Lenroot R, Greenstein D, Wallace GL, Ordaz S, Molloy EA, Blumenthal JD, Tossell JW, Stayer C, Samango-Sprouse CA, Shen D, Davatzikos C, Merke D, Chrousos GP (2006) Puberty-related influences on brain development. Mol Cell Endocrinol 254–255:154–162

    PubMed  Google Scholar 

  • Gozzi M, Nielson DM, Lenroot RK, Ostuni JL, Luckenbaugh DA, Thurm AE, Giedd JN, Swedo SE (2012) A magnetization transfer imaging study of corpus callosum myelination in young children with autism. Biol Psychiatry 72:215–220, Epub 2012 Mar 2012

    PubMed  Google Scholar 

  • Hadjikhani N, Joseph RM, Snyder J, Tager-Flusberg H (2006) Anatomical differences in the mirror neuron system and social cognition network in autism. Cereb Cortex 16:1276–1282

    PubMed  Google Scholar 

  • Hardan AY, Minshew NJ, Mallikarjuhn M, Keshavan MS (2001) Brain volume in autism. J Child Neurol 16:421–424

    PubMed  CAS  Google Scholar 

  • Hardan AY, Muddasani S, Vemulapalli M, Keshavan MS, Minshew NJ (2006) An MRI study of increased cortical thickness in autism. Am J Psychiatry 163:1290–1292

    PubMed  Google Scholar 

  • Hardan AY, Girgis RR, Adams J, Gilbert AR, Melhem NM, Keshavan MS, Minshew NJ (2008a) Brief report: abnormal association between the thalamus and brain size in Asperger’s disorder. J Autism Dev Disord 38:390–394

    PubMed  Google Scholar 

  • Hardan AY, Minshew NJ, Melhem NM, Srihari S, Jo B, Bansal R, Keshavan MS, Stanley JA (2008b) An MRI and proton spectroscopy study of the thalamus in children with autism. Psychiatry Res 163:97–105

    PubMed  Google Scholar 

  • Hardan AY, Libove RA, Keshavan MS, Melhem NM, Minshew NJ (2009a) A preliminary longitudinal magnetic resonance imaging study of brain volume and cortical thickness in autism. Biol Psychiatry 66:320–326

    PubMed  Google Scholar 

  • Hardan AY, Pabalan M, Gupta N, Bansal R, Melhem NM, Fedorov S, Keshavan MS, Minshew NJ (2009b) Corpus callosum volume in children with autism. Psychiatry Res 174:57–61

    PubMed  Google Scholar 

  • Hazlett HC, Poe M, Gerig G, Smith RG, Provenzale J, Ross A, Gilmore J, Piven J (2005) Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years. Arch Gen Psychiatry 62:1366–1376

    PubMed  Google Scholar 

  • Hazlett HC, Poe MD, Gerig G, Styner M, Chappell C, Smith RG, Vachet C, Piven J (2011) Early brain overgrowth in autism associated with an increase in cortical surface area before age 2 years. Arch Gen Psychiatry 68:467–476

    PubMed  Google Scholar 

  • Hazlett HC, Gu H, McKinstry RC, Shaw DWW, Botteron KN, Dager SR, Styner M, Vachet C, Gerig G, Paterson SJ, Schultz RT, Estes AM, Evans AC, Piven J, Network IBIS (2012) Brain volume findings in 6-month-old infants at high familial risk for autism. Am J Psychiatry 169:601–608

    PubMed  Google Scholar 

  • Haznedar MM, Buchsbaum MS, Hazlett EA, LiCalzi EM, Cartwright C, Hollander E (2006) Volumetric analysis and three-dimensional glucose metabolic mapping of the striatum and thalamus in patients with autism spectrum disorders. Am J Psychiatry 163:1252–1263

    PubMed  Google Scholar 

  • He Q, Karsch K, Duan Y (2008) Abnormalities in MRI traits of corpus callosum in autism subtype. In: Conference proceedings: annual international conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society conference, pp 3900–3903

    Google Scholar 

  • Herbert MR, Ziegler DA, Deutsch CK, O’Brien LM, Lange N, Bakardjiev A, Hodgson J, Adrien KT, Steele S, Makris N, Kennedy D, Harris GJ, Caviness VS Jr (2003) Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain 126:1182–1192

    PubMed  CAS  Google Scholar 

  • Hong S, Ke X, Tang T, Hang Y, Chu K, Huang H, Ruan Z, Lu Z, Tao G, Liu Y (2011) Detecting abnormalities of corpus callosum connectivity in autism using magnetic resonance imaging and diffusion tensor tractography. Psychiatry Res 194:333–339

    PubMed  Google Scholar 

  • Hua X, Thompson PM, Leow AD, Madsen SK, Caplan R, Alger JR, O’Neill J, Joshi K, Smalley SL, Toga AW, Levitt JG (2011) Brain growth rate abnormalities visualized in adolescents with autism. Hum Brain Mapp 20:21441

    Google Scholar 

  • Hultman CM, Sparen P, Cnattingius S (2002) Perinatal risk factors for infantile autism. Epidemiology 13:417–423

    PubMed  Google Scholar 

  • Hutsler JJ, Love T, Zhang H (2007) Histological and magnetic resonance imaging assessment of cortical layering and thickness in autism spectrum disorders. Biol Psychiatry 61:449–457

    PubMed  Google Scholar 

  • Hyde KL, Samson F, Evans AC, Mottron L (2010) Neuroanatomical differences in brain areas implicated in perceptual and other core features of autism revealed by cortical thickness analysis and voxel-based morphometry. Hum Brain Mapp 31:556–566

    PubMed  Google Scholar 

  • Jancke L, Preis S, Steinmetz H (1999) The relation between forebrain volume and midsagittal size of the corpus callosum in children. Neuroreport 10:2981–2985

    PubMed  CAS  Google Scholar 

  • Jiao Y, Chen R, Ke X, Chu K, Lu Z, Herskovits EH (2010) Predictive models of autism spectrum disorder based on brain regional cortical thickness. Neuroimage 50:589–599

    PubMed  Google Scholar 

  • Just MA, Cherkassky VL, Keller TA, Minshew NJ (2004) Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain 127:1811–1821

    PubMed  Google Scholar 

  • Just MA, Cherkassky VL, Keller TA, Kana RK, Minshew NJ (2007) Functional and anatomical cortical underconnectivity in autism: evidence from an FMRI study of an executive function task and corpus callosum morphometry. Cereb Cortex 17:951–961

    PubMed  Google Scholar 

  • Kana RK, Keller TA, Cherkassky VL, Minshew NJ, Just MA (2006) Sentence comprehension in autism: thinking in pictures with decreased functional connectivity. Brain 129:2484–2493

    PubMed  Google Scholar 

  • Kana RK, Keller TA, Cherkassky VL, Minshew NJ, Just MA (2009) Atypical frontal-posterior synchronization of theory of mind regions in autism during mental state attribution. Soc Neurosci 4:135–152

    PubMed  Google Scholar 

  • Kates WR, Burnette CP, Eliez S, Strunge LA, Kaplan D, Landa R, Reiss AL, Pearlson GD (2004) Neuroanatomic variation in monozygotic twin pairs discordant for the narrow phenotype for autism. Am J Psychiatry 161:539–546

    PubMed  Google Scholar 

  • Keary CJ, Minshew NJ, Bansal R, Goradia D, Fedorov S, Keshavan MS, Hardan AY (2009) Corpus callosum volume and neurocognition in autism. J Autism Dev Disord 39:834–841

    PubMed  Google Scholar 

  • Keshavan MS, Diwadkar VA, DeBellis M, Dick E, Kotwal R, Rosenberg DR, Sweeney JA, Minshew N, Pettegrew JW (2002) Development of the corpus callosum in childhood, adolescence and early adulthood. Life Sci 70:1909–1922

    PubMed  CAS  Google Scholar 

  • Kilian S, Brown WS, Hallam BJ, McMahon W, Lu J, Johnson M, Bigler ED, Lainhart J (2008) Regional callosal morphology in autism and macrocephaly. Dev Neuropsychol 33:74–99

    PubMed  Google Scholar 

  • Kraemer HC, Yesavage JA, Taylor JL, Kupfer D (2000) How can we learn about developmental processes from cross-sectional studies, or can we? Am J Psychiatry 157:163–171

    PubMed  CAS  Google Scholar 

  • Lainhart JE (2003) Increased rate of head growth during infancy in autism. JAMA 290:393–394

    PubMed  Google Scholar 

  • Lainhart JE, Piven J, Wzorek M, Landa R, Santangelo SL, Coon H, Folstein SE (1997) Macrocephaly in children and adults with autism. J Am Acad Child Adolesc Psychiatry 36:282–290

    PubMed  CAS  Google Scholar 

  • LaMantia AS, Rakic P (1990) Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey. J Neurosci 10:2156–2175

    PubMed  CAS  Google Scholar 

  • Levitt P (2003) Structural and functional maturation of the developing primate brain. J Pediatr 143:S35–S45

    PubMed  CAS  Google Scholar 

  • Mak-Fan KM, Taylor MJ, Roberts W, Lerch JP (2012) Measures of cortical grey matter structure and development in children with autism spectrum disorder. J Autism Dev Disord 42:419–427

    PubMed  Google Scholar 

  • Mason RA, Williams DL, Kana RK, Minshew N, Just MA (2008) Theory of mind disruption and recruitment of the right hemisphere during narrative comprehension in autism. Neuropsychologia 46:269–280

    PubMed  Google Scholar 

  • McAlonan GM, Daly E, Kumari V, Critchley HD, van Amelsvoort T, Suckling J, Simmons A, Sigmundsson T, Greenwood K, Russell A, Schmitz N, Happe F, Howlin P, Murphy DG (2002) Brain anatomy and sensorimotor gating in Asperger’s syndrome. Brain 125:1594–1606

    PubMed  Google Scholar 

  • McAlonan GM, Suckling J, Wong N, Cheung V, Lienenkaemper N, Cheung C, Chua SE (2008) Distinct patterns of grey matter abnormality in high-functioning autism and Asperger’s syndrome. J Child Psychol Psychiatry 49:1287–1295

    PubMed  Google Scholar 

  • Minshew NJ, Goldstein G, Siegel DJ (1997) Neuropsychologic functioning in autism: profile of a complex information processing disorder. J Int Neuropsychol Soc 3:303–316

    PubMed  CAS  Google Scholar 

  • Misaki M, Wallace GL, Dankner N, Martin A, Bandettini PA (2012) Characteristic cortical thickness patterns in adolescents with autism spectrum disorders: interactions with age and intellectual ability revealed by canonical correlation analysis. Neuroimage 60:1890–1901

    PubMed  Google Scholar 

  • Moore JK (2002) Maturation of human auditory cortex: implications for speech perception. Ann Otol Rhinol Laryngol Suppl 189:7–10

    PubMed  Google Scholar 

  • Mosconi MW, Cody-Hazlett H, Poe MD, Gerig G, Gimpel-Smith R, Piven J (2009) Longitudinal study of amygdala volume and joint attention in 2- to 4-year-old children with autism. Arch Gen Psychiatry 66:509–516

    PubMed  Google Scholar 

  • Munson J, Dawson G, Abbott R, Faja S, Webb SJ, Friedman SD, Shaw D, Artru A, Dager SR (2006) Amygdalar volume and behavioral development in autism. Arch Gen Psychiatry 63:686–693

    PubMed  Google Scholar 

  • Murphy DG, Beecham J, Craig M, Ecker C (2011) Autism in adults. New biologicial findings and their translational implications to the cost of clinical services. Brain Res 1380:22–33

    PubMed  CAS  Google Scholar 

  • Murphy CM, Deeley Q, Daly EM, Ecker C, O’Brien FM, Hallahan B, Loth E, Toal F, Reed S, Hales S, Robertson DM, Craig MC, Mullins D, Barker GJ, Lavender T, Johnston P, Murphy KC, Murphy DG (2012) Anatomy and aging of the amygdala and hippocampus in autism spectrum disorder: an in vivo magnetic resonance imaging study of Asperger syndrome. Autism Res 5:3–12. doi:10.1002/aur.1227, Epub 2011 Sep 1021

    PubMed  Google Scholar 

  • Nacewicz BM, Dalton KM, Johnstone T, Long MT, McAuliff EM, Oakes TR, Alexander AL, Davidson RJ (2006) Amygdala volume and nonverbal social impairment in adolescent and adult males with autism. Arch Gen Psychiatry 63:1417–1428

    PubMed  Google Scholar 

  • Nickl-Jockschat T, Habel U, Michel TM, Manning J, Laird AR, Fox PT, Schneider F, Eickhoff SB (2012) Brain structure anomalies in autism spectrum disorder—a meta-analysis of VBM studies using anatomic likelihood estimation. Hum Brain Mapp 33:1470–1489

    PubMed  Google Scholar 

  • Nicolson R, DeVito TJ, Vidal CN, Sui Y, Hayashi KM, Drost DJ, Williamson PC, Rajakumar N, Toga AW, Thompson PM (2006) Detection and mapping of hippocampal abnormalities in autism. Psychiatry Res 148:11–21

    PubMed  Google Scholar 

  • Nordahl CW, Lange N, Li DD, Barnett LA, Lee A, Buonocore MH, Simon TJ, Rogers S, Ozonoff S, Amaral DG (2011) Brain enlargement is associated with regression in preschool-age boys with autism spectrum disorders. Proc Natl Acad Sci USA 108:20195–20200

    PubMed  CAS  Google Scholar 

  • Nordahl CW, Scholz R, Yang X, Buonocore MH, Simon TJ, Rogers S, Amaral DG (2012) Increased rate of amygdala growth in children aged 2 to 4 years with autism spectrum disorders: a longitudinal study. Arch Gen Psychiatry 69:53–61

    PubMed  Google Scholar 

  • Nyden A, Carlsson M, Carlsson A, Gillberg C (2004) Interhemispheric transfer in high-functioning children and adolescents with autism spectrum disorders: a controlled pilot study. Dev Med Child Neurol 46:448–454

    PubMed  Google Scholar 

  • O’Brien FM, Page L, O'Gorman RL, Bolton P, Sharma A, Baird G, Daly E, Hallahan B, Conroy RM, Foy C, Curran S, Robertson D, Murphy KC, Murphy DG (2010) Maturation of limbic regions in Asperger syndrome: a preliminary study using proton magnetic resonance spectroscopy and structural magnetic resonance imaging. Psychiatry Res 184:77–85

    PubMed  Google Scholar 

  • Petropoulos H, Friedman SD, Shaw DWW, Artru AA, Dawson G, Dager SR (2006) Gray matter abnormalities in autism spectrum disorder revealed by T2 relaxation. Neurology 67:632–636

    PubMed  CAS  Google Scholar 

  • Pujol J, Vendrell P, Junque C, Marti-Vilalta JL, Capdevila A (1993) When does human brain development end? Evidence of corpus callosum growth up to adulthood. Ann Neurol 34:71–75

    PubMed  CAS  Google Scholar 

  • Radua J, Via E, Catani M, Mataix-Cols D (2011) Voxel-based meta-analysis of regional white-matter volume differences in autism spectrum disorder versus healthy controls. Psychol Med 41:1539–1550

    PubMed  CAS  Google Scholar 

  • Raznahan A, Toro R, Daly EM, Robertson DMW, Murphy CM, Deeley Q, Bolton PF, Paus T, Murphy DGM (2010) Cortical anatomy in autism spectrum disorder: an in vivo MRI study on the effect of age. Cereb Cortex 20:1332–1340

    PubMed  Google Scholar 

  • Rice SA, Bigler ED, Cleavinger HB, Tate DF, Sayer J, McMahon W, Ozonoff S, Lu J, Lainhart JE (2005) Macrocephaly, corpus callosum morphology, and autism. J Child Neurol 20:34–41

    PubMed  Google Scholar 

  • Saitoh O, Karns CM, Courchesne E (2001) Development of the hippocampal formation from 2 to 42 years: MRI evidence of smaller area dentata in autism. Brain 124:1317–1324

    PubMed  CAS  Google Scholar 

  • Salmond CH, de Haan M, Friston KJ, Gadian DG, Vargha-Khadem F (2003) Investigating individual differences in brain abnormalities in autism. Philos Trans R Soc Lond B Biol Sci 358:405–413

    PubMed  CAS  Google Scholar 

  • Salmond CH, Ashburner J, Connelly A, Friston KJ, Gadian DG, Vargha-Khadem F (2005) The role of the medial temporal lobe in autistic spectrum disorders. Eur J Neurosci 22:764–772

    PubMed  CAS  Google Scholar 

  • Scheel C, Rotarska-Jagiela A, Schilbach L, Lehnhardt FG, Krug B, Vogeley K, Tepest R (2011) Imaging derived cortical thickness reduction in high-functioning autism: key regions and temporal slope. Neuroimage 58:391–400

    PubMed  Google Scholar 

  • Schipul SE, Keller TA, Just MA (2011) Inter-regional brain communication and its disturbance in autism. Front Syst Neurosci 5:10

    PubMed  Google Scholar 

  • Schumann CM, Hamstra J, Goodlin-Jones BL, Lotspeich LJ, Kwon H, Buonocore MH, Lammers CR, Reiss AL, Amaral DG (2004) The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. J Neurosci 24:6392–6401

    PubMed  CAS  Google Scholar 

  • Schumann CM, Barnes CC, Lord C, Courchesne E (2009) Amygdala enlargement in toddlers with autism related to severity of social and communication impairments. Biol Psychiatry 66:942–949

    PubMed  Google Scholar 

  • Schumann CM, Bloss CS, Barnes CC, Wideman GM, Carper RA, Akshoomoff N, Pierce K, Hagler D, Schork N, Lord C, Courchesne E (2010) Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. J Neurosci 30:4419–4427

    PubMed  CAS  Google Scholar 

  • Scott JA, Schumann CM, Goodlin-Jones BL, Amaral DG (2009) A comprehensive volumetric analysis of the cerebellum in children and adolescents with autism spectrum disorder. Autism Res 2:246–257

    PubMed  Google Scholar 

  • Shaw P, Greenstein D, Lerch J, Clasen L, Lenroot R, Gogtay N, Evans A, Rapoport J, Giedd J (2006) Intellectual ability and cortical development in children and adolescents. Nature 440:676–679

    PubMed  CAS  Google Scholar 

  • Shokouhi M, Williams JHG, Waiter GD, Condon B (2012) Changes in the sulcal size associated with autism spectrum disorder revealed by sulcal morphometry. Autism Res 5(4):245–252

    PubMed  Google Scholar 

  • Sowell ER, Trauner DA, Gamst A, Jernigan TL (2002) Development of cortical and subcortical brain structures in childhood and adolescence: a structural MRI study. Dev Med Child Neurol 44:4–16

    PubMed  Google Scholar 

  • Sparks B-F, Friedman SD, Shaw DW, Aylward EH, Echelard D, Artru AA, Maravilla KR, Giedd JN, Munson J, Dawson G, Dager SR (2002) Brain structural abnormalities in young children with autism spectrum disorder. Neurology 59:184–192

    PubMed  CAS  Google Scholar 

  • Stanfield AC, McIntosh AM, Spencer MD, Philip R, Gaur S, Lawrie SM (2008) Towards a neuroanatomy of autism: a systematic review and meta-analysis of structural magnetic resonance imaging studies. Eur Psychiatry 23:289–299

    PubMed  Google Scholar 

  • Stevenson RE, Schroer RJ, Skinner C, Fender D, Simensen RJ (1997) Autism and macrocephaly. Lancet 349:1744–1745

    PubMed  CAS  Google Scholar 

  • Tamura R, Kitamura H, Endo T, Hasegawa N, Someya T (2010) Reduced thalamic volume observed across different subgroups of autism spectrum disorders. Psychiatry Res 184:186–188

    PubMed  Google Scholar 

  • Tepest R, Jacobi E, Gawronski A, Krug B, Moller-Hartmann W, Lehnhardt FG, Vogeley K (2010) Corpus callosum size in adults with high-functioning autism and the relevance of gender. Psychiatry Res 183:38–43

    PubMed  Google Scholar 

  • Thompson PM, Giedd JN, Woods RP, MacDonald D, Evans AC, Toga AW (2000) Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature 404:190–193

    PubMed  CAS  Google Scholar 

  • Toal F, Daly EM, Page L, Deeley Q, Hallahan B, Bloemen O, Cutter WJ, Brammer MJ, Curran S, Robertson D, Murphy C, Murphy KC, Murphy DG (2010) Clinical and anatomical heterogeneity in autistic spectrum disorder: a structural MRI study. Psychol Med 40:1171–1181

    PubMed  CAS  Google Scholar 

  • Tsatsanis KD, Rourke BP, Klin A, Volkmar FR, Cicchetti D, Schultz RT (2003) Reduced thalamic volume in high-functioning individuals with autism. Biol Psychiatry 53:121–129

    PubMed  Google Scholar 

  • Via E, Radua J, Cardoner N, Happé F, Mataix-Cols D (2011) Meta-analysis of gray matter abnormalities in autism spectrum disorder: should Asperger disorder be subsumed under a broader umbrella of autistic spectrum disorder? Arch Gen Psychiatry 68:409–418

    PubMed  Google Scholar 

  • Waiter GD, Williams JH, Murray AD, Gilchrist A, Perrett DI, Whiten A (2004) A voxel-based investigation of brain structure in male adolescents with autistic spectrum disorder. Neuroimage 22:619–625

    PubMed  Google Scholar 

  • Waiter GD, Williams JH, Murray AD, Gilchrist A, Perrett DI, Whiten A (2005) Structural white matter deficits in high-functioning individuals with autistic spectrum disorder: a voxel-based investigation. Neuroimage 24:455–461

    PubMed  Google Scholar 

  • Wallace GL, Dankner N, Kenworthy L, Giedd JN, Martin A (2010) Age-related temporal and parietal cortical thinning in autism spectrum disorders. Brain 133:3745–3754

    PubMed  Google Scholar 

  • Webb SJ, Sparks B-F, Friedman SD, Shaw DWW, Giedd JN, Dawson G, Dager SR (2009) Cerebellar vermal volumes and behavioral correlates in children with autism spectrum disorder. Psychiatry Res 172:61–67

    PubMed  Google Scholar 

  • Winkler AM, Kochunov P, Blangero J, Almasy L, Zilles K, Fox PT, Duggirala R, Glahn DC (2010) Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage 53:1135–1146

    PubMed  Google Scholar 

  • Yu KK, Cheung C, Chua SE, McAlonan GM (2011) Can Asperger syndrome be distinguished from autism? An anatomic likelihood meta-analysis of MRI studies. J Psychiatry Neurosci 36:412–421

    PubMed  Google Scholar 

  • Zielinski BA, Gennatas ED, Zhou J, Seeley WW (2010) Network-level structural covariance in the developing brain. Proc Natl Acad Sci USA 107:18191–18196

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brandon A. Zielinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer New York

About this chapter

Cite this chapter

Zielinski, B.A., Prigge, M.D., Nielsen, J.A., Lainhart, J.E. (2013). Structural Imaging in Autism. In: Casanova, M., El-Baz, A., Suri, J. (eds) Imaging the Brain in Autism. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6843-1_7

Download citation

Publish with us

Policies and ethics