Skip to main content

Ovarian Hormones: Structure, Biosynthesis, Function, Mechanism of Action, and Laboratory Diagnosis

  • Chapter
  • First Online:
Clinical Reproductive Medicine and Surgery

Abstract

The ovary is a dynamic endocrine organ. The follicle cells interact in a highly integrated manner to produce several steroid and peptide hormones. Steroidogenesis requires effectual delivery, uptake, and use of sterol by an array of steroidogenic enzymes. Steroid hormones play a central role in the reproductive system. Physiological effects of steroid hormones are mediated via their nuclear receptors that belong to a superfamily of ligand-dependent transcription factors. The two isoforms of ER and PR (α and β) are differentially expressed in different tissues, leading to tissue-specific responses. Furthermore, the differences in gene expression depend on interactions with protein cofactors, the coactivators, and corepressors. A better understanding of the effect that the cell environment has on nuclear receptors and their coregulators led to the discovery and understanding of the mechanism of action of antiestrogens and selective receptor modulators.

Virtually all steps in steroid biosynthesis require the action of LH and FSH and are influenced by endocrine, autocrine, and paracrine actions of several intraovarian peptide hormones, growth factors, cytokines, and neuropeptides. In recent years, research has shown that these growth factors affect various cell processes, such as cytodifferentiation, mitogenesis, and apoptosis in a variety of ways. Activins, inhibins, and follistatins, members of the transforming growth factor (TGF)β (beta) family, were first discovered as gonadal peptide hormones that have actions on FSH production by pituitary gonadotropes to maintain normal reproductive axis. Follistatin also produced by the pituitary gonadotropes binds and modulates bioactivity of activin. Inhibins produced by the ovary also antagonize activin signaling via interaction with type II activin/BMP receptors and prevent the recruitment of type I receptor or via binding to betaglycans. They act along with other members of the TGFβ (beta) family, including TGFβ (beta) and a subset of BMPs and numerous growth factors (IGFs) and cytokines (interleukin 1 and 6), in concert with LH/FSH via a complex network of intracellular signaling to mediate their actions. Furthermore, another member of the TGFβ (beta) family, AMH produced by granulosa cells of early developing follicles, inhibits the FSH-induced primordial follicle growth and serves as a marker of ovarian reserve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McNatty KP, Makris A, De Grazia C, Osathanondh R, Ryan KJ. The production of progesterone, androgens and oestrogens by human granulosa cells in vitro and in vivo. J Steroid Biochem. 1979;11(1C):775–9.

    PubMed  CAS  Google Scholar 

  2. Hsueh AJ, Adashi EY, Jones PB, Welsh Jr TH. Hormonal regulation of the differentiation of cultured ovarian granulosa cells. Endocr Rev. 1984;5(1):76–127.

    PubMed  CAS  Google Scholar 

  3. Knight PG. Roles of inhibins, activins, and follistatin in the female reproductive system. Front Neuroendocrinol. 1996;17(4):476–509.

    PubMed  CAS  Google Scholar 

  4. Gwynne JT, Strauss 3rd JF. The role of lipoproteins in steroidogenesis and cholesterol metabolism in steroidogenic glands. Endocr Rev. 1982;3(3):299–329.

    PubMed  CAS  Google Scholar 

  5. Clark BJ, Wells J, King SR, Stocco DM. The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J Biol Chem. 1994;269(45):28314–22.

    PubMed  CAS  Google Scholar 

  6. Lin D, Sugawara T, Strauss 3rd JF, Clark BJ, Stocco DM, Saenger P, et al. Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science. 1995;267(5205):1828–31.

    PubMed  CAS  Google Scholar 

  7. O’Malley BW, Strott CA. Steroid hormones: metabolism and mechanism of action. In: Yen SSC, Jaffe RB, Barberi RL, editors. Reproductive endocrinology. Philadelphia: WB Saunders; 1999.

    Google Scholar 

  8. Yasui T, Uemura H, Tezuka M, Yamada M, Irahara M, Miura M, et al. Biological effects of hormone replacement therapy in relation to serum estradiol levels. Horm Res. 2001;56(1–2):38–44.

    PubMed  CAS  Google Scholar 

  9. Boepple PA, Mansfield MJ, Link K, Crawford JD, Crigler Jr JF, Kushner DC, et al. Impact of sex steroids and their suppression on skeletal growth and maturation. Am J Physiol. 1988;255(4 Pt 1):E559–66.

    PubMed  CAS  Google Scholar 

  10. Drummond AE, Findlay JK. The role of estrogen in folliculogenesis. Mol Cell Endocrinol. 1999;151(1–2):57–64.

    PubMed  CAS  Google Scholar 

  11. Young JR, Jaffe RB. Strength-duration characteristics of estrogen effects on gonadotropin response to gonadotropin-releasing hormone in women. II. Effects of varying concentrations of estradiol. J Clin Endocrinol Metab. 1976;42(3):432–42.

    PubMed  CAS  Google Scholar 

  12. Panay N, Sands RH, Studd JWW. Oestrogen and behaviour. In: Genazzani AR, Petraglia F, Purdy RH, editors. The brain: source and target for sex steroid hormones. Carnforth: The Parthenon Publishing; 1996. p. 257–76.

    Google Scholar 

  13. Joffe H, Cohen LS. Estrogen, serotonin, and mood disturbance: where is the therapeutic bridge? Biol Psychiatry. 1998;44(9):798–811.

    PubMed  CAS  Google Scholar 

  14. Carlson MC, Zandi PP, Plassman BL, Tschanz JT, Welsh-Bohmer KA, Steffens DC, et al. Hormone replacement therapy and reduced cognitive decline in older women: the Cache County Study. Neurology. 2001;57(12):2210–6.

    PubMed  CAS  Google Scholar 

  15. Tang MX, Jacobs D, Stern Y, Marder K, Schofield P, Gurland B, et al. Effect of oestrogen during menopause on risk and age at onset of Alzheimer’s disease. Lancet. 1996;348(9025):429–32.

    PubMed  CAS  Google Scholar 

  16. Henderson VW, Paganini-Hill A, Miller BL, Elble RJ, Reyes PF, Shoupe D, et al. Estrogen for Alzheimer’s disease in women: randomized, double-blind, placebo-controlled trial. Neurology. 2000;54(2):295–301.

    PubMed  CAS  Google Scholar 

  17. Shumaker SA, Reboussin BA, Espeland MA, Rapp SR, McBee WL, Dailey M, et al. The Women’s Health Initiative Memory Study (WHIMS): a trial of the effect of estrogen therapy in preventing and slowing the progression of dementia. Control Clin Trials. 1998;19(6):604–21.

    PubMed  CAS  Google Scholar 

  18. Mulnard RA, Cotman CW, Kawas C, van Dyck CH, Sano M, Doody R, et al. Estrogen replacement therapy for treatment of mild to moderate Alzheimer disease: a randomized controlled trial. Alzheimer’s Disease Cooperative Study. JAMA. 2000;283(8):1007–15.

    PubMed  CAS  Google Scholar 

  19. Shumaker SA, Legault C, Kuller L, Rapp SR, Thal L, Lane DS, et al. Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in post-menopausal women: Women’s Health Initiative Memory Study. JAMA. 2004;291(24):2947–58.

    PubMed  CAS  Google Scholar 

  20. Effects of hormone therapy on bone mineral density: results from the post-menopausal estrogen/progestin interventions (PEPI) trial. The Writing Group for the PEPI. JAMA. 1996;276(17):1389–96.

    Google Scholar 

  21. Anderson GL, Limacher M, Assaf AR, Bassford T, Beresford SA, Black H, et al. Effects of conjugated equine estrogen in post-menopausal women with hysterectomy: the Women’s Health Initiative randomized controlled trial. JAMA. 2004;291(14):1701–12.

    PubMed  CAS  Google Scholar 

  22. Karas RH, Patterson BL, Mendelsohn ME. Human vascular smooth muscle cells contain functional estrogen receptor. Circulation. 1994;89(5):1943–50.

    PubMed  CAS  Google Scholar 

  23. Venkov CD, Rankin AB, Vaughan DE. Identification of authentic estrogen receptor in cultured endothelial cells. A potential mechanism for steroid hormone regulation of endothelial function. Circulation. 1996;94(4):727–33.

    PubMed  CAS  Google Scholar 

  24. Kim HP, Lee JY, Jeong JK, Bae SW, Lee HK, Jo I. Nongenomic stimulation of nitric oxide release by estrogen is mediated by estrogen receptor alpha localized in caveolae. Biochem Biophys Res Commun. 1999;263(1):257–62.

    PubMed  CAS  Google Scholar 

  25. Kannel WB, Hjortland MC, McNamara PM, Gordon T. Menopause and risk of cardiovascular disease: the Framingham study. Ann Intern Med. 1976;85(4):447–52.

    PubMed  CAS  Google Scholar 

  26. Hu FB, Grodstein F, Hennekens CH, Colditz GA, Johnson M, Manson JE, et al. Age at natural menopause and risk of cardiovascular disease. Arch Intern Med. 1999;159(10):1061–6.

    PubMed  CAS  Google Scholar 

  27. Le Guevel R, Pakdel F. Assessment of oestrogenic potency of chemicals used as growth promoter by in-vitro methods. Hum Reprod. 2001;16(5):1030–6.

    PubMed  Google Scholar 

  28. O’Connell MB. Pharmacokinetic and pharmacologic variation between different estrogen products. J Clin Pharmacol. 1995;35(9 Suppl):18S–24.

    PubMed  Google Scholar 

  29. Kirschner MA, Samojlik E, Drejka M, Szmal E, Schneider G, Ertel N. Androgen-estrogen metabolism in women with upper body versus lower body obesity. J Clin Endocrinol Metab. 1990;70(2):473–9.

    PubMed  CAS  Google Scholar 

  30. Siiteri PK, MacDonald PC. Placental estrogen biosynthesis during human pregnancy. J Clin Endocrinol Metab. 1966;26(7):751–61.

    PubMed  CAS  Google Scholar 

  31. Ruder HJ, Loriaux L, Lipsett MB. Estrone sulfate: production rate and metabolism in man. J Clin Invest. 1972;51(4):1020–33.

    PubMed  CAS  Google Scholar 

  32. Loriaux DL, Ruder HJ, Knab DR, Lipsett MB. Estrone sulfate, estrone, estradiol and estriol plasma levels in human pregnancy. J Clin Endocrinol Metab. 1972;35(6):887–91.

    PubMed  CAS  Google Scholar 

  33. Barbieri R. Endocrine disorders in pregnancy. In: Yen SSC, Jaffe RB, Barberi RL, editors. Reproductive endocrinology. Philadelphia: WB Saunders; 1999. p. 785–811.

    Google Scholar 

  34. Goldfien A. Ovaries. In: Greenspan FS, Gardner DG, editors. Basic and clinical endocrinology. New York: McGraw-Hill; 2001. p. 453–508.

    Google Scholar 

  35. Franks S. Polycystic ovary syndrome. N Engl J Med. 1995;333(13):853–61.

    PubMed  CAS  Google Scholar 

  36. Abraham GE. Ovarian and adrenal contribution to peripheral androgens during the menstrual cycle. J Clin Endocrinol Metab. 1974;39(2):340–6.

    PubMed  CAS  Google Scholar 

  37. Anderson DC. Sex-hormone-binding globulin. Clin Endocrinol (Oxf). 1974;3(1):69–96.

    CAS  Google Scholar 

  38. Rosner W, Smith R. Isolation of human testosterone-estradiol-binding globulin. Methods Enzymol. 1975;36:109–20.

    PubMed  CAS  Google Scholar 

  39. Berube D, Séralini GE, Gagné R, Hammond GL. Localization of the human sex hormone-binding globulin gene (SHBG) to the short arm of chromosome 17 (17p12–p13). Cytogenet Cell Genet. 1990;54(1–2):65–7.

    PubMed  CAS  Google Scholar 

  40. Hammond GL, Bocchinfuso WP. Sex hormone-binding globulin: gene organization and structure/function analyses. Horm Res. 1996;45(3–5):197–201.

    PubMed  CAS  Google Scholar 

  41. Dunn JF, Nisula BC, Rodbard D. Transport of steroid hormones: binding of 21 endogenous steroids to both testosterone-binding globulin and corticosteroid-binding globulin in human plasma. J Clin Endocrinol Metab. 1981;53(1):58–68.

    PubMed  CAS  Google Scholar 

  42. Plymate SR, Matej LA, Jones RE, Friedl KE. Inhibition of sex hormone-binding globulin production in the human hepatoma (Hep G2) cell line by insulin and prolactin. J Clin Endocrinol Metab. 1988;67(3):460–4.

    PubMed  CAS  Google Scholar 

  43. Pardridge WM. Serum bioavailability of sex steroid hormones. Clin Endocrinol Metab. 1986;15(2):259–78.

    PubMed  CAS  Google Scholar 

  44. Manni A, Pardridge WM, Cefalu W, Nisula BC, Bardin CW, Santner SJ, et al. Bioavailability of albumin-bound testosterone. J Clin Endocrinol Metab. 1985;61(4):705–10.

    PubMed  CAS  Google Scholar 

  45. Englebienne P. The serum steroid transport proteins: biochemistry and clinical significance. Mol Aspects Med. 1984;7(4):313–96.

    PubMed  CAS  Google Scholar 

  46. Rudd BT, Duignan NM, London DR. A rapid method for the measurement of sex hormone binding globulin capacity of sera. Clin Chim Acta. 1974;55(2):165–78.

    PubMed  CAS  Google Scholar 

  47. Cumming DC, Wall SR. Non-sex hormone-binding globulin-bound testosterone as a marker for hyperandrogenism. J Clin Endocrinol Metab. 1985;61(5):873–6.

    PubMed  CAS  Google Scholar 

  48. Yalow RS, Berson SA. Immunoassay of endogenous plasma insulin in man. J Clin Invest. 1960;39:1157–75.

    PubMed  CAS  Google Scholar 

  49. Niswender GD. Hapten-radioimmunoassay for steroid hormones. In: Peron FG, Caldwell PF, editors. Immunologic methods in steroid determination. New York: Appelton-Century-Crofts; 1970. p. 149–73.

    Google Scholar 

  50. Rao PN, Moore Jr PH, Peterson DM, Tcholakian RK. Synthesis of new steroid haptens for radioimmunoassay—part V. 19-O-carboxymethyl ether derivative of testosterone. A highly specific antiserum for immunoassay of testosterone from both male and female plasma without chromatography. J Steroid Biochem. 1978;9(6):539–45.

    PubMed  CAS  Google Scholar 

  51. Gupta MK, Kolar T. Interference by luteal phase progesterone in a commercial kit for measurement of 17-alpha hydroxyprogesterone. Clin Chem. 1985;31:1246–7.

    PubMed  CAS  Google Scholar 

  52. Taieb J, Benattar C, Birr AS, Lindenbaum A. Limitations of steroid determination by direct immunoassay. Clin Chem. 2002;48(3):583–5.

    PubMed  CAS  Google Scholar 

  53. Diver MJ, Nisbet JA. Warning on plasma oestradiol measurement. Lancet. 1987;2(8567):1097.

    PubMed  CAS  Google Scholar 

  54. Fuqua JS, Sher ES, Migeon CJ, Berkovitz GD. Assay of plasma testosterone during the first six months of life: importance of chromatographic purification of steroids. Clin Chem. 1995;41(8 Pt 1):1146–9.

    PubMed  CAS  Google Scholar 

  55. Fanchin R, de Ziegler D, Castracane VD, Taieb J, Olivennes F, Frydman R. Physiopathology of premature progesterone elevation. Fertil Steril. 1995;64(4):796–801.

    PubMed  CAS  Google Scholar 

  56. Dighe AS, Sluss PM. Improved detection of serum estradiol after sample extraction procedure. Clin Chem. 2004;50(4):764–6.

    PubMed  CAS  Google Scholar 

  57. Griffiths WJ, Jonsson AP, Liu S, Rai DK, Wang Y. Electrospray and tandem mass spectrometry in biochemistry. Biochem J. 2001;355(Pt 3):545–61.

    PubMed  CAS  Google Scholar 

  58. Nelson RE, Grebe SK, OKane DJ, Singh RJ. Liquid chromatography-tandem mass spectrometry assay for simultaneous measurement of estradiol and estrone in human plasma. Clin Chem. 2004;50(2):373–84.

    PubMed  CAS  Google Scholar 

  59. Valbuena D, Jasper M, Remohí J, Pellicer A, Simón C. Ovarian stimulation and endometrial receptivity. Hum Reprod. 1999;14 Suppl 2Suppl 2:107–11.

    PubMed  CAS  Google Scholar 

  60. Kligman I, Rosenwaks Z. Differentiating clinical profiles: predicting good responders, poor responders, and hyperresponders. Fertil Steril. 2001;76(6):1185–90.

    PubMed  CAS  Google Scholar 

  61. Ranadive GN, Mistry JS, Damodaran K, Khosravi MJ, Diamandi A, Gimpel T, et al. Rapid, convenient radioimmunoassay of estrone sulfate. Clin Chem. 1998;44(2):244–9.

    PubMed  CAS  Google Scholar 

  62. Gaskell SJ, Brownsey BG, Groom GV. Analyses for progesterone in serum by gas chromatography/mass spectrometry: target data for external quality assessment of routine assays. Clin Chem. 1984;30(10):1696–700.

    PubMed  CAS  Google Scholar 

  63. Kubasik NP, Hallauer GD, Brodows RG. Evaluation of a direct solid-phase radioimmunoassay for progesterone, useful for monitoring luteal function. Clin Chem. 1984;30(2):284–6.

    PubMed  CAS  Google Scholar 

  64. De Boever J, Kohen F, Vandekerckhove D, Van Maele G. Solid-phase chemiluminescence immunoassay for progesterone in unextracted serum. Clin Chem. 1984;30(10):1637–41.

    PubMed  Google Scholar 

  65. Radwanska E, Hammond J, Smith P. Single midluteal progesterone assay in the management of ovulatory infertility. J Reprod Med. 1981;26(2):85–9.

    PubMed  CAS  Google Scholar 

  66. Radwanska E, Frankenberg J, Allen EI. Plasma progesterone levels in normal and abnormal early human pregnancy. Fertil Steril. 1978;30(4):398–402.

    PubMed  CAS  Google Scholar 

  67. Baxendale PM, Jacobs HS, James VH. Plasma and salivary androstenedione and dihydrotestosterone in women with hyperandrogenism. Clin Endocrinol (Oxf). 1983;18(5):447–57.

    CAS  Google Scholar 

  68. Boots LR, Potter S, Potter D, Azziz R. Measurement of total serum testosterone levels using commercially available kits: high degree of between-kit variability. Fertil Steril. 1998;69(2):286–92.

    PubMed  CAS  Google Scholar 

  69. Vlahos I, MacMahon W, Sgoutas D, Bowers W, Thompson J, Trawick W. An improved ultrafiltration method for determining free testosterone in serum. Clin Chem. 1982;28(11):2286–91.

    PubMed  CAS  Google Scholar 

  70. Gupta MK. Androgen assessment in hirsutism and alopecia. Cleve Clin J Med. 1990;57(3):292–7.

    PubMed  CAS  Google Scholar 

  71. Van Uytfanghe K, Stöckl D, Kaufman JM, Fiers T, Ross HA, De Leenheer AP, et al. Evaluation of a candidate reference measurement procedure for serum free testosterone based on ultrafiltration and isotope dilution-gas chromatography-mass spectrometry. Clin Chem. 2004;50(11):2101–10.

    PubMed  Google Scholar 

  72. Winters SJ, Kelley DE, Goodpaster B. The analog free testosterone assay: are the results in men clinically useful? Clin Chem. 1998;44(10):2178–82.

    PubMed  CAS  Google Scholar 

  73. Vermeulen A, Verdonck L, Kaufman JM. A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab. 1999;84(10):3666–72.

    PubMed  CAS  Google Scholar 

  74. Mathur RS, Moody LO, Landgrebe S, Williamson HO. Plasma androgens and sex hormone-binding globulin in the evaluation of hirsute females. Fertil Steril. 1981;35(1):29–35.

    PubMed  CAS  Google Scholar 

  75. Vining RF, McGinley RA, Symons RG. Hormones in saliva: mode of entry and consequent implications for clinical interpretation. Clin Chem. 1983;29(10):1752–6.

    PubMed  CAS  Google Scholar 

  76. Tamate K, Charleton M, Gosling JP, Egan D, Ishikawa M, Fottrell PF, et al. Direct colorimetric monoclonal antibody enzyme immunoassay for estradiol-17 beta in saliva. Clin Chem. 1997;43(7):1159–64.

    PubMed  CAS  Google Scholar 

  77. McCullagh D. Dual endocrine activity of testes. Science. 1932;76:19.

    PubMed  CAS  Google Scholar 

  78. Rivier J, Spiess J, McClintock R, Vaughan J, Vale W. Purification and partial characterization of inhibin from porcine follicular fluid. Biochem Biophys Res Commun. 1985;133(1):120–7.

    PubMed  CAS  Google Scholar 

  79. Robertson DM, de Vos FL, Foulds LM, McLachlan RI, Burger HG, Morgan FJ, et al. Isolation of a 31 kDa form of inhibin from bovine follicular fluid. Mol Cell Endocrinol. 1986;44(3):271–7.

    PubMed  CAS  Google Scholar 

  80. Ling N, Ying SY, Ueno N, Shimasaki S, Esch F, Hotta M, et al. Pituitary FSH is released by a heterodimer of the beta-subunits from the two forms of inhibin. Nature. 1986;321(6072):779–82.

    PubMed  CAS  Google Scholar 

  81. Ueno N, Ling N, Ying SY, Esch F, Shimasaki S, Guillemin R, et al. Isolation and partial characterization of follistatin: a single-chain Mr 35,000 monomeric protein that inhibits the release of follicle-stimulating hormone. Proc Natl Acad Sci USA. 1987;84(23):8282–6.

    PubMed  CAS  Google Scholar 

  82. Mason AJ, Niall HD, Seeburg PH. Structure of two human ovarian inhibins. Biochem Biophys Res Commun. 1986;135(3):957–64.

    PubMed  CAS  Google Scholar 

  83. Cate RL, Mattaliano RJ, Hession C, Tizard R, Farber NM, Cheung A, et al. Isolation of the bovine and human genes for Mullerian inhibiting substance and expression of the human gene in animal cells. Cell. 1986;45:685–98.

    PubMed  CAS  Google Scholar 

  84. Lockwood GM, Muttukrishna S, Groome NP, Knight PG, Ledger WL. Circulating inhibins and activin A during GnRH-analogue down-regulation and ovarian hyperstimulation with recombinant FSH for in-vitro fertilization-embryo transfer. Clin Endocrinol (Oxf). 1996;45(6):741–8.

    CAS  Google Scholar 

  85. Welt C, Sidis Y, Keutmann H, Schneyer A. Activins, inhibins, and follistatins: from endocrinology to signaling. A paradigm for the new millennium. Exp Biol Med (Maywood). 2002;227(9):724–52.

    CAS  Google Scholar 

  86. Burger HG. Evidence for a negative feedback role of inhibin in follicle stimulating hormone regulation in women. Hum Reprod. 1993;8 Suppl 2Suppl 2:129–32.

    PubMed  CAS  Google Scholar 

  87. Attardi B, Keeping HS, Winters SJ, Kotsuji F, Maurer RA, Troen P, et al. Rapid and profound suppression of messenger ribonucleic acid encoding follicle-stimulating hormone beta by inhibin from primate Sertoli cells. Mol Endocrinol. 1989;3(2):280–7.

    PubMed  CAS  Google Scholar 

  88. Attardi B, Winters SJ. Decay of follicle-stimulating hormone-beta messenger RNA in the presence of transcriptional inhibitors and/or inhibin, activin, or follistatin. Mol Endocrinol. 1993;7(5):668–80.

    PubMed  CAS  Google Scholar 

  89. Burger HG, Farnworth PG, Findlay JK, Gurusinghe CJ, Healy DL, Mamers P, et al. Aspects of current and future inhibin research. Reprod Fertil Dev. 1995;7(5):997–1002.

    PubMed  CAS  Google Scholar 

  90. Ireland JL, Good TE, Knight PG, Ireland JJ. Alterations in amounts of different forms of inhibin during follicular atresia. Biol Reprod. 1994;50(6):1265–76.

    PubMed  CAS  Google Scholar 

  91. Robertson DM, Giacometti M, Foulds LM, Lahnstein J, Goss NH, Hearn MT, et al. Isolation of inhibin alpha-subunit precursor proteins from bovine follicular fluid. Endocrinology. 1989;125(4):2141–9.

    PubMed  CAS  Google Scholar 

  92. Sugino K, Nakamura T, Takio K, Titani K, Miyamoto K, Hasegawa Y, et al. Inhibin alpha-subunit monomer is present in bovine follicular fluid. Biochem Biophys Res Commun. 1989;159(3):1323–9.

    PubMed  CAS  Google Scholar 

  93. McConnell DS, Padmanabhan V, Pollak TB, Groome NP, Ireland JJ, Midgley Jr AR, et al. Development of a two-site solid-phase immunochemiluminescent assay for measurement of dimeric inhibin-A in human serum and other biological fluids. Clin Chem. 1996;42(8 Pt 1):1159–67.

    PubMed  CAS  Google Scholar 

  94. Groome NP, Illingworth PJ, O’Brien M, Pai R, Rodger FE, Mather JP, et al. Measurement of dimeric inhibin B throughout the human menstrual cycle. J Clin Endocrinol Metab. 1996;81(4):1401–5.

    PubMed  CAS  Google Scholar 

  95. Welt CK, Smith ZA, Pauler DK, Hall JE. Differential regulation of inhibin A and inhibin B by luteinizing hormone, follicle-stimulating hormone, and stage of follicle development. J Clin Endocrinol Metab. 2001;86(6):2531–7.

    PubMed  CAS  Google Scholar 

  96. Corson SL, Gutmann J, Batzer FR, Wallace H, Klein N, Soules MR, et al. Inhibin-B as a test of ovarian reserve for infertile women. Hum Reprod. 1999;14(11):2818–21.

    PubMed  CAS  Google Scholar 

  97. Eldar-Geva T, Robertson DM, Cahir N, Groome N, Gabbe MP, Maclachlan V, et al. Relationship between serum inhibin A and B and ovarian follicle development after a daily fixed dose administration of recombinant follicle-stimulating hormone. J Clin Endocrinol Metab. 2000;85(2):607–13.

    PubMed  CAS  Google Scholar 

  98. Burger HG, Cahir N, Robertson DM, Groome NP, Dudley E, Green A, et al. Serum inhibins A and B fall differentially as FSH rises in perimenopausal women. Clin Endocrinol (Oxf). 1998;48(6):809–13.

    CAS  Google Scholar 

  99. Lockwood GM, Muttukrishna S, Groome NP, Matthews DR, Ledger WL, et al. Mid-follicular phase pulses of inhibin B are absent in polycystic ovarian syndrome and are initiated by successful laparoscopic ovarian diathermy: a possible mechanism regulating emergence of the dominant follicle. J Clin Endocrinol Metab. 1998;83(5):1730–5.

    PubMed  CAS  Google Scholar 

  100. Norman RJ, Milner CR, Groome NP, Robertson DM. Circulating follistatin concentrations are higher and activin concentrations are lower in polycystic ovarian syndrome. Hum Reprod. 2001;16(4):668–72.

    PubMed  CAS  Google Scholar 

  101. Illingworth PJ, Groome NP, Duncan WC, Grant V, Tovanabutra S, Baird DT, et al. Measurement of circulating inhibin forms during the establishment of pregnancy. J Clin Endocrinol Metab. 1996;81(4):1471–5.

    PubMed  CAS  Google Scholar 

  102. Lambert-Messerlian GM, Canick JA, Palomaki GE, Schneyer AL. Second trimester levels of maternal serum inhibin A, total inhibin, alpha inhibin precursor, and activin in Down’s syndrome pregnancy. J Med Screen. 1996;3(2):58–62.

    PubMed  CAS  Google Scholar 

  103. Aitken DA, Wallace EM, Crossley JA, Swanston IA, van Pareren Y, van Maarle M, et al. Dimeric inhibin A as a marker for Down’s syndrome in early pregnancy. N Engl J Med. 1996;334(19):1231–6.

    PubMed  CAS  Google Scholar 

  104. Ciris M, Erhan Y, Zekioglu O, Bayramoglu H. Inhibin alpha and beta expression in ovarian stromal tumors and their histological equivalences. Acta Obstet Gynecol Scand. 2004;83(5):491–6.

    PubMed  Google Scholar 

  105. Chudecka-Glaz A, Rzepka-Gorska I, Kosmowska B. Inhibin A levels in cyst fluid from epithelial ovarian tumors. Acta Obstet Gynecol Scand. 2004;83(5):501–3.

    PubMed  Google Scholar 

  106. Anderson RA, Irvine DS, Balfour C, Groome NP, Riley SC. Inhibin B in seminal plasma: testicular origin and relationship to spermatogenesis. Hum Reprod. 1998;13(4):920–6.

    PubMed  CAS  Google Scholar 

  107. Jensen TK, Andersson AM, Hjollund NH, Scheike T, Kolstad H, Giwercman A, et al. Inhibin B as a serum marker of spermatogenesis: correlation to differences in sperm concentration and follicle-stimulating hormone levels. A study of 349 Danish men. J Clin Endocrinol Metab. 1997;82(12):4059–63.

    PubMed  CAS  Google Scholar 

  108. von Eckardstein S, Simoni M, Bergmann M, Weinbauer GF, Gassner P, Schepers AG, et al. Serum inhibin B in combination with serum follicle-stimulating hormone (FSH) is a more sensitive marker than serum FSH alone for impaired spermatogenesis in men, but cannot predict the presence of sperm in testicular tissue samples. J Clin Endocrinol Metab. 1999;84(7):2496–501.

    Google Scholar 

  109. Peng C, Ohno T, Khorasheh S, Leung PC. Activin and follistatin as local regulators in the human ovary. Biol Signals. 1996;5(2):81–9.

    PubMed  CAS  Google Scholar 

  110. Hasegawa Y, Miyamoto K, Abe Y, Nakamura T, Sugino H, Eto Y, et al. Induction of follicle stimulating hormone receptor by erythroid differentiation factor on rat granulosa cell. Biochem Biophys Res Commun. 1988;156(2):668–74.

    PubMed  CAS  Google Scholar 

  111. Miro F, Smyth CD, Hillier SG. Development-related effects of recombinant activin on steroid synthesis in rat granulosa cells. Endocrinology. 1991;129(6):3388–94.

    PubMed  CAS  Google Scholar 

  112. Demura R, Suzuki T, Tajima S, Mitsuhashi S, Odagiri E, Demura H, et al. Human plasma free activin and inhibin levels during the menstrual cycle. J Clin Endocrinol Metab. 1993;76(4):1080–2.

    PubMed  CAS  Google Scholar 

  113. Santoro N, Adel T, Skurnick JH. Decreased inhibin tone and increased activin A secretion characterize reproductive aging in women. Fertil Steril. 1999;71(4):658–62.

    PubMed  CAS  Google Scholar 

  114. Lockwood GM. The role of inhibin in polycystic ovary syndrome. Hum Fertil (Camb). 2000;3(2):86–92.

    Google Scholar 

  115. Munsterberg A, Lovell-Badge R. Expression of the mouse anti-Mullerian hormone gene suggests a role in both male and female sexual differentiation. Development. 1991;113:613–24.

    PubMed  CAS  Google Scholar 

  116. Weenen C, Laven JS, Von Bergh AR, Cranfield M, Groome NP, Visser JA, et al. Anti-Mullerian hormone expression pattern in the human ovary: potential implications for initial and cyclic follicle recruitment. Mol Hum Reprod. 2004;10:77–83.

    PubMed  CAS  Google Scholar 

  117. van Rooij IA, Broekmans FJ, Scheffer GJ, Looman CW, Habbema JD, de Jong FH, et al. Serum antimullerian hormone levels best reflect the reproductive decline with age in normal women with proven fertility: a longitudinal study. Fertil Steril. 2005;83(4):979–87.

    PubMed  Google Scholar 

  118. Steiner AZ, Herring AH, Kesner JS, Meadows JW, Stanczyk FZ, Hoberman S, et al. Antimüllerian hormone as a predictor of natural fecundability in women aged 30-42 years. Obstet Gynecol. 2011;117(4):798–804.

    PubMed  CAS  Google Scholar 

  119. Méduri G, Massin N, Guibourdenche J, Bachelot A, Fiori O, Kuttenn F, et al. Serum anti-Müllerian hormone expression in women with premature ovarian failure. Hum Reprod. 2007;22(1):778–85.

    Google Scholar 

  120. Seifer DB, Baker VL, Leader B. Age-specific serum anti-­Müllerian hormone values for 17,120 women presenting to fertility centers within the United States. Fertil Steril. 2011;95(2):747–50.

    PubMed  CAS  Google Scholar 

  121. Almog B, Shehata F, Suissa S, Holzer H, Shalom-Paz E, La Marca A, et al. Age-related normograms of serum antimüllerian hormone levels in a population of infertile women: a multicenter study. Fertil Steril. 2011;95(7):2359–63.

    PubMed  CAS  Google Scholar 

  122. Visser JA, de Jong FH, Laven JS, Themmen AP. Anti-Müllerian hormone: a new marker for ovarian function. Reproduction. 2006;131(1):1–9.

    PubMed  CAS  Google Scholar 

  123. Lutchman Singh K, Muttukrishna S, Stein RC, McGarrigle HH, Patel A, Parikh B, et al. Predictors of ovarian reserve in young women with breast cancer. Br J Cancer. 2007;96(12):1808–16.

    PubMed  CAS  Google Scholar 

  124. Pellatt L, Hanna L, Brincat M, Galea R, Brain H, Whitehead S, et al. Granulosa cell production of anti-Müllerian hormone is increased in polycystic ovaries. J Clin Endocrinol Metab. 2007;92(1):240–5.

    PubMed  CAS  Google Scholar 

  125. Wachs DS, Coffler MS, Malcom PJ, Chang RJ. Serum anti-­Mullerian hormone concentrations are not altered by acute administration of follicle stimulating hormone in polycystic ovary syndrome and normal women. J Clin Endocrinol Metab. 2007;92(5):1871–4.

    PubMed  CAS  Google Scholar 

  126. Piltonen T, Morin-Papunen L, Koivunen R, Perheentupa A, Ruokonen A, Tapanainen JS. Serum anti-Müllerian hormone levels remain high until late reproductive age and decrease during metformin therapy in women with polycystic ovary syndrome. Hum Reprod. 2005;20(7):1920–6.

    Google Scholar 

  127. Gnoth C, Schuring AN, Friol K, Tigges J, Mallmann P, Godehardt E. Relevance of anti-Mullerian hormone measurement in a routine IVF program. Hum Reprod. 2008;23(6):1359–65.

    PubMed  CAS  Google Scholar 

  128. La Marca A, Sighinolfi G, Radi D, Argento C, Baraldi E, Carducci Artenisio A, et al. Anti-Mullerian hormone (AMH) as a predictive marker in assisted reproductive technology (ART). Hum Reprod Update. 2010;16(2):113–30.

    PubMed  Google Scholar 

  129. Hillier SG, Miro F. Inhibin, activin, and follistatin. Potential roles in ovarian physiology. Ann N Y Acad Sci. 1993;687:29–38.

    PubMed  CAS  Google Scholar 

  130. Schneyer AL, Hall HA, Lambert-Messerlian G, Wang QF, Sluss P, Crowley Jr WF. Follistatin-activin complexes in human serum and follicular fluid differ immunologically and biochemically. Endocrinology. 1996;137(1):240–7.

    PubMed  CAS  Google Scholar 

  131. Sugino H, Sugino K, Hashimoto O, Shoji H, Nakamura T. Follistatin and its role as an activin-binding protein. J Med Invest. 1997;44(1–2):1–14.

    PubMed  CAS  Google Scholar 

  132. Hashimoto O, Nakamura T, Shoji H, Shimasaki S, Hayashi Y, Sugino H. A novel role of follistatin, an activin-binding protein, in the inhibition of activin action in rat pituitary cells. Endocytotic degradation of activin and its acceleration by follistatin associated with cell-surface heparan sulfate. J Biol Chem. 1997;272(21):13835–42.

    PubMed  CAS  Google Scholar 

  133. Adashi EY, Resnick CE, Hurwitz A, Ricciarelli E, Hernandez ER, Roberts CT, et al. Insulin-like growth factors: the ovarian connection. Hum Reprod. 1991;6(9):1213–9.

    PubMed  CAS  Google Scholar 

  134. Giudice LC. Insulin-like growth factors and ovarian follicular development. Endocr Rev. 1992;13(4):641–69.

    PubMed  CAS  Google Scholar 

  135. Monget P, Bondy C. Importance of the IGF system in early folliculogenesis. Mol Cell Endocrinol. 2000;163(1–2):89–93.

    PubMed  CAS  Google Scholar 

  136. Geisthovel F, Moretti-Rojas I, Asch RH, Rojas FJ. Expression of insulin-like growth factor-II (IGF-II) messenger ribonucleic acid (mRNA), but not IGF-I mRNA, in human preovulatory granulosa cells. Hum Reprod. 1989;4(8):899–902.

    PubMed  CAS  Google Scholar 

  137. el-Roeiy A, Chen X, Roberts VJ, LeRoith D, Roberts Jr CT, Yen SS. Expression of insulin-like growth factor-I (IGF-I) and IGF-II and the IGF-I, IGF-II, and insulin receptor genes and localization of the gene products in the human ovary. J Clin Endocrinol Metab. 1993;77(5):1411–8.

    PubMed  CAS  Google Scholar 

  138. el-Roeiy A, Chen X, Roberts VJ, Shimasakai S, Ling N, LeRoith D, et al. Expression of the genes encoding the insulin-like growth factors (IGF-I and II), the IGF and insulin receptors, and IGF-binding proteins-1-6 and the localization of their gene products in normal and polycystic ovary syndrome ovaries. J Clin Endocrinol Metab. 1994;78(6):1488–96.

    PubMed  CAS  Google Scholar 

  139. Carson RS, Zhang Z, Hutchinson LA, Herington AC, Findlay JK. Growth factors in ovarian function. J Reprod Fertil. 1989;85(2):735–46.

    PubMed  CAS  Google Scholar 

  140. Westergaard LG, Andersen CY. Epidermal growth factor (EGF) in human preovulatory follicles. Hum Reprod. 1989;4(3):257–60.

    PubMed  CAS  Google Scholar 

  141. Khan-Dawood FS. Human corpus luteum: immunocytochemical localization of epidermal growth factor. Fertil Steril. 1987;47(6):916–9.

    PubMed  CAS  Google Scholar 

  142. Ayyagari RR, Khan-Dawood FS. Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics. Am J Obstet Gynecol. 1987;156(4):942–6.

    PubMed  CAS  Google Scholar 

  143. Kudlow JE, Kobrin MS, Purchio AF, Twardzik DR, Hernandez ER, Asa SL, et al. Ovarian transforming growth factor-alpha gene expression: immunohistochemical localization to the theca-interstitial cells. Endocrinology. 1987;121(4):1577–9.

    PubMed  CAS  Google Scholar 

  144. Lobb DK, Kobrin MS, Kudlow JE, Dorrington JH. Transforming growth factor-alpha in the adult bovine ovary: identification in growing ovarian follicles. Biol Reprod. 1989;40(5):1087–93.

    PubMed  CAS  Google Scholar 

  145. Yeh J, Lee GY, Anderson E. Presence of transforming growth factor-alpha messenger ribonucleic acid (mRNA) and absence of epidermal growth factor mRNA in rat ovarian granulosa cells, and the effects of these factors on steroidogenesis in vitro. Biol Reprod. 1993;48(5):1071–81.

    PubMed  CAS  Google Scholar 

  146. Adashi EY, Resnick CE, Croft CS, May JV, Gospodarowicz D. Basic fibroblast growth factor as a regulator of ovarian granulosa cell differentiation: a novel non-mitogenic role. Mol Cell Endocrinol. 1988;55(1):7–14.

    PubMed  CAS  Google Scholar 

  147. McAllister JM, Byrd W, Simpson ER. The effects of growth factors and phorbol esters on steroid biosynthesis in isolated human theca interna and granulosa-lutein cells in long term culture. J Clin Endocrinol Metab. 1994;79(1):106–12.

    PubMed  CAS  Google Scholar 

  148. Koos R. Ovarian angiogenesis. In: Adashi EY, Leung PCK, editors. The ovary. New York: Raven; 1993. p. 433–53.

    Google Scholar 

  149. Khan SA, Schmidt K, Hallin P, Di Pauli R, De Geyter C, Nieschlag E. Human testis cytosol and ovarian follicular fluid contain high amounts of interleukin-1-like factor(s). Mol Cell Endocrinol. 1988;58(2–3):221–30.

    PubMed  CAS  Google Scholar 

  150. Machelon V, Emilie D, Lefevre A, Nome F, Durand-Gasselin I, Testart J. Interleukin-6 biosynthesis in human preovulatory follicles: some of its potential roles at ovulation. J Clin Endocrinol Metab. 1994;79(2):633–42.

    PubMed  CAS  Google Scholar 

  151. Piquette GN, Simón C, el Danasouri I, Frances A, Polan ML. Gene regulation of interleukin-1 beta, interleukin-1 receptor type I, and plasminogen activator inhibitor-1 and -2 in human granulosa-luteal cells. Fertil Steril. 1994;62(4):760–70.

    PubMed  CAS  Google Scholar 

  152. Buscher U, Chen FC, Kentenich H, Schmiady H. Cytokines in the follicular fluid of stimulated and non-stimulated human ovaries; is ovulation a suppressed inflammatory reaction? Hum Reprod. 1999;14(1):162–6.

    PubMed  CAS  Google Scholar 

  153. Brannstrom M. Potential role of cytokines in ovarian physiology: the case of interleukin-1. In: Leung PCK, editor. The ovary. 2nd ed. London: Elsevier/Academic; 2004. p. 261–71.

    Google Scholar 

  154. Salmassi A, Lü S, Hedderich J, Oettinghaus C, Jonat W, Mettler L. Interaction of interleukin-6 on human granulosa cell steroid secretion. J Endocrinol. 2001;170(2):471–8.

    PubMed  CAS  Google Scholar 

  155. Roby KF, Weed J, Lyles R, Terranova PF. Immunological evidence for a human ovarian tumor necrosis factor-alpha. J Clin Endocrinol Metab. 1990;71(5):1096–102.

    PubMed  CAS  Google Scholar 

  156. Roby KF, Terranova PF. Effects of tumor necrosis factor-alpha in vitro on steroidogenesis of healthy and atretic follicles of the rat: theca as a target. Endocrinology. 1990;126(5):2711–8.

    PubMed  CAS  Google Scholar 

  157. Stefenson A, Owman C, Sjöberg NO, Sporrong B, Walles B. Comparative study of the autonomic innervation of the mammalian ovary, with particular regard to the follicular system. Cell Tissue Res. 1981;215(1):47–62.

    PubMed  CAS  Google Scholar 

  158. Kawakami M, Kubo K, Uemura T, Nagase M, Hayashi R. Involvement of ovarian innervation in steroid secretion. Endocrinology. 1981;109(1):136–45.

    PubMed  CAS  Google Scholar 

  159. Dyer CA, Erickson GF. Norepinephrine amplifies human chorionic gonadotropin-stimulated androgen biosynthesis by ovarian theca-interstitial cells. Endocrinology. 1985;116(4):1645–52.

    PubMed  CAS  Google Scholar 

  160. Evans RM. The steroid and thyroid hormone receptor superfamily. Science. 1988;240(4854):889–95.

    PubMed  CAS  Google Scholar 

  161. McKenna NJ, Lanz RB, O’Malley BW. Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev. 1999;20(3):321–44.

    PubMed  CAS  Google Scholar 

  162. Jensen EV, Greene GL, Closs LE, DeSombre ER, Nadji M. Receptors reconsidered: a 20-year perspective. Recent Prog Horm Res. 1982;38:1–40.

    PubMed  CAS  Google Scholar 

  163. Tsai MJ, O’Malley BW. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem. 1994;63:451–86.

    PubMed  CAS  Google Scholar 

  164. King WJ, Greene GL. Monoclonal antibodies localize oestrogen receptor in the nuclei of target cells. Nature. 1984;307(5953):745–7.

    PubMed  CAS  Google Scholar 

  165. Bresnick EH, Dalman FC, Sanchez ER, Pratt WB. Evidence that the 90-kDa heat shock protein is necessary for the steroid binding conformation of the L cell glucocorticoid receptor. J Biol Chem. 1989;264(9):4992–7.

    PubMed  CAS  Google Scholar 

  166. Strahle U, Klock G, Schutz G. A DNA sequence of 15 base pairs is sufficient to mediate both glucocorticoid and progesterone induction of gene expression. Proc Natl Acad Sci USA. 1987;84(22):7871–5.

    PubMed  CAS  Google Scholar 

  167. Edwards DP. The role of coactivators and corepressors in the biology and mechanism of action of steroid hormone receptors. J Mammary Gland Biol Neoplasia. 2000;5(3):307–24.

    PubMed  CAS  Google Scholar 

  168. Green S, Walter P, Greene G, Krust A, Goffin C, Jensen E, et al. Cloning of the human oestrogen receptor cDNA. J Steroid Biochem. 1986;24(1):77–83.

    PubMed  CAS  Google Scholar 

  169. Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA. 1996;93(12):5925–30.

    PubMed  CAS  Google Scholar 

  170. Enmark E, Pelto-Huikko M, Grandien K, Lagercrantz S, Lagercrantz J, Fried G, et al. Human estrogen receptor beta-gene structure, chromosomal localization, and expression pattern. J Clin Endocrinol Metab. 1997;82(12):4258–65.

    PubMed  CAS  Google Scholar 

  171. Mosselman S, Polman J, Dijkema R. ER beta: identification and characterization of a novel human estrogen receptor. FEBS Lett. 1996;392(1):49–53.

    PubMed  CAS  Google Scholar 

  172. Couse JF, Korach KS. Estrogen receptor null mice: what have we learned and where will they lead us? Endocr Rev. 1999;20(3):358–417.

    PubMed  CAS  Google Scholar 

  173. Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engström O, et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature. 1997;389(6652):753–8.

    PubMed  CAS  Google Scholar 

  174. Kuiper GG, Carlsson B, Grandien K, Enmark E, Häggblad J, Nilsson S, et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology. 1997;138(3):863–70.

    PubMed  CAS  Google Scholar 

  175. Pike AC, Brzozowski AM, Hubbard RE, Bonn T, Thorsell AG, Engström O, et al. Structure of the ligand-binding domain of oestrogen receptor beta in the presence of a partial agonist and a full antagonist. EMBO J. 1999;18(17):4608–18.

    PubMed  CAS  Google Scholar 

  176. Smith EP, Boyd J, Frank GR, Takahashi H, Cohen RM, Specker B, et al. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med. 1994;331(16):1056–61.

    PubMed  CAS  Google Scholar 

  177. Fuqua SA, Fitzgerald SD, Chamness GC, Tandon AK, McDonnell DP, Nawaz Z, et al. Variant human breast tumor estrogen receptor with constitutive transcriptional activity. Cancer Res. 1991;51(1):105–9.

    PubMed  CAS  Google Scholar 

  178. Grainger DJ, Metcalfe JC. Tamoxifen: teaching an old drug new tricks? Nat Med. 1996;2(4):381–5.

    PubMed  CAS  Google Scholar 

  179. Kedar RP, Bourne TH, Powles TJ, Collins WP, Ashley SE, Cosgrove DO, et al. Effects of tamoxifen on uterus and ovaries of post-menopausal women in a randomised breast cancer prevention trial. Lancet. 1994;343(8909):1318–21.

    PubMed  CAS  Google Scholar 

  180. Yang NN, Bryant HU, Hardikar S, Sato M, Galvin RJ, Glasebrook AL, et al. Estrogen and raloxifene stimulate transforming growth factor-beta 3 gene expression in rat bone: a potential mechanism for estrogen- or raloxifene-mediated bone maintenance. Endocrinology. 1996;137(5):2075–84.

    PubMed  CAS  Google Scholar 

  181. Berry M, Metzger D, Chambon P. Role of the two activating domains of the oestrogen receptor in the cell-type and promoter-context dependent agonistic activity of the anti-oestrogen 4-hydroxytamoxifen. EMBO J. 1990;9(9):2811–8.

    PubMed  CAS  Google Scholar 

  182. Landel CC, Kushner PJ, Greene GL. The interaction of human estrogen receptor with DNA is modulated by receptor-associated proteins. Mol Endocrinol. 1994;8(10):1407–19.

    PubMed  CAS  Google Scholar 

  183. Webb P, Lopez GN, Uht RM, Kushner PJ. Tamoxifen activation of the estrogen receptor/AP-1 pathway: potential origin for the cell-specific estrogen-like effects of antiestrogens. Mol Endocrinol. 1995;9(4):443–56.

    PubMed  CAS  Google Scholar 

  184. Yang NN, Venugopalan M, Hardikar S, Glasebrook A. Identification of an estrogen response element activated by metabolites of 17beta-estradiol and raloxifene. Science. 1996;273(5279):1222–5.

    PubMed  CAS  Google Scholar 

  185. Bundred N, Howell A. Fulvestrant (Faslodex): current status in the therapy of breast cancer. Expert Rev Anticancer Ther. 2002;2(2):151–60.

    PubMed  CAS  Google Scholar 

  186. Kastner P, Krust A, Turcotte B, Stropp U, Tora L, Gronemeyer H, et al. Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J. 1990;9(5):1603–14.

    PubMed  CAS  Google Scholar 

  187. Sartorius CA, Melville MY, Hovland AR, Tung L, Takimoto GS, Horwitz KB. A third transactivation function (AF3) of human progesterone receptors located in the unique N-terminal segment of the B-isoform. Mol Endocrinol. 1994;8(10):1347–60.

    PubMed  CAS  Google Scholar 

  188. Giangrande PH, Kimbrel EA, Edwards DP, McDonnell DP. The opposing transcriptional activities of the two isoforms of the human progesterone receptor are due to differential cofactor binding. Mol Cell Biol. 2000;20(9):3102–15.

    PubMed  CAS  Google Scholar 

  189. Lim CS, Baumann CT, Htun H, Xian W, Irie M, Smith CL, et al. Differential localization and activity of the A- and B-forms of the human progesterone receptor using green fluorescent protein chimeras. Mol Endocrinol. 1999;13(3):366–75.

    PubMed  CAS  Google Scholar 

  190. Conneely OM, Mulac-Jericevic B, DeMayo F, Lydon JP, O’Malley BW. Reproductive functions of progesterone receptors. Recent Prog Horm Res. 2002;57:339–55.

    PubMed  CAS  Google Scholar 

  191. Feil PD, Clarke CL, Satyaswaroop PG. Progestin-mediated changes in progesterone receptor forms in the normal human endometrium. Endocrinology. 1988;123(5):2506–13.

    PubMed  CAS  Google Scholar 

  192. Ogle TF. Progesterone-action in the decidual mesometrium of pregnancy. Steroids. 2002;67(1):1–14.

    PubMed  CAS  Google Scholar 

  193. Moguilewsky M, Philibert P. RU 38486: potent antiglucocorticoid activity correlated with strong binding to the cytosolic glucocorticoid receptor followed by an impaired activation. J Steroid Biochem. 1984;20(1):271–6.

    PubMed  CAS  Google Scholar 

  194. Baulieu EE. Contragestion and other clinical applications of RU 486, an antiprogesterone at the receptor. Science. 1989;245(4924):1351–7.

    PubMed  CAS  Google Scholar 

  195. Spitz IM, Bardin CW. Mifepristone (RU 486)—a modulator of progestin and glucocorticoid action. N Engl J Med. 1993;329(6):404–12.

    PubMed  CAS  Google Scholar 

  196. Gronemeyer H, Benhamou B, Berry M, Bocquel MT, Gofflo D, Garcia T, et al. Mechanisms of antihormone action. J Steroid Biochem Mol Biol. 1992;41(3–8):217–21.

    PubMed  CAS  Google Scholar 

  197. Lubahn DB, Joseph DR, Sullivan PM, Willard HF, French FS, Wilson EM. Cloning of human androgen receptor complementary DNA and localization to the X chromosome. Science. 1988;240(4850):327–30.

    PubMed  CAS  Google Scholar 

  198. Wilson CM, McPhaul MJ. A and B forms of the androgen receptor are present in human genital skin fibroblasts. Proc Natl Acad Sci USA. 1994;91(4):1234–8.

    PubMed  CAS  Google Scholar 

  199. Jenster G, van der Korput JA, Trapman J, Brinkmann AO. Functional domains of the human androgen receptor. J Steroid Biochem Mol Biol. 1992;41(3–8):671–5.

    PubMed  CAS  Google Scholar 

  200. Brinkmann AO. Molecular basis of androgen insensitivity. Mol Cell Endocrinol. 2001;179(1–2):105–9.

    PubMed  CAS  Google Scholar 

  201. Chavez B, Méndez JP, Ulloa-Aguirre A, Larrea F, Vilchis F. Eight novel mutations of the androgen receptor gene in patients with androgen insensitivity syndrome. J Hum Genet. 2001;46(10):560–5.

    PubMed  CAS  Google Scholar 

  202. Rosa S, Biason-Lauber A, Mongan NP, Navratil F, Schoenle EJ. Complete androgen insensitivity syndrome caused by a novel mutation in the ligand-binding domain of the androgen receptor: functional characterization. J Clin Endocrinol Metab. 2002;87(9):4378–82.

    PubMed  CAS  Google Scholar 

  203. Mongan NP, Jääskeläinen J, Green K, Schwabe JW, Shimura N, Dattani M, et al. Two de novo mutations in the AR gene cause the complete androgen insensitivity syndrome in a pair of monozygotic twins. J Clin Endocrinol Metab. 2002;87(3):1057–61.

    PubMed  CAS  Google Scholar 

  204. Ong YC, Kolatkar PR, Yong EL. Androgen receptor mutations causing human androgen insensitivity syndromes show a key role of residue M807 in Helix 8-Helix 10 interactions and in receptor ligand-binding domain stability. Mol Hum Reprod. 2002;8(2):101–8.

    PubMed  CAS  Google Scholar 

  205. Revelli A, Massobrio M, Tesarik J. Nongenomic actions of steroid hormones in reproductive tissues. Endocr Rev. 1998;19(1):3–17.

    PubMed  CAS  Google Scholar 

  206. Revelli A, Tesarik J, Massobrio M. Nongenomic effects of neurosteroids. Gynecol Endocrinol. 1998;12(1):61–7.

    PubMed  CAS  Google Scholar 

  207. Chester AH, Jiang C, Borland JA, Yacoub MH, Collins P. Oestrogen relaxes human epicardial coronary arteries through non-endothelium-dependent mechanisms. Coron Artery Dis. 1995;6(5):417–22.

    PubMed  CAS  Google Scholar 

  208. Aronica SM, Kraus WL, Katzenellenbogen BS. Estrogen action via the cAMP signaling pathway: stimulation of adenylate cyclase and cAMP-regulated gene transcription. Proc Natl Acad Sci USA. 1994;91(18):8517–21.

    PubMed  CAS  Google Scholar 

  209. Pedram A, Razandi M, Aitkenhead M, Hughes CC, Levin ER. Integration of the non-genomic and genomic actions of estrogen. Membrane-initiated signaling by steroid to transcription and cell biology. J Biol Chem. 2002;277(52):50768–75.

    PubMed  CAS  Google Scholar 

  210. Ullrich A, Gray A, Tam AW, Yang-Feng T, Tsubokawa M, Collins C, et al. Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J. 1986;5(10):2503–12.

    PubMed  CAS  Google Scholar 

  211. Abbott AM, Bueno R, Pedrini MT, Murray JM, Smith RJ. Insulin-like growth factor I receptor gene structure. J Biol Chem. 1992;267(15):10759–63.

    PubMed  CAS  Google Scholar 

  212. Richards JS, Russell DL, Ochsner S, Hsieh M, Doyle KH, Falender AE, et al. Novel signaling pathways that control ovarian follicular development, ovulation, and luteinization. Recent Prog Horm Res. 2002;57:195–220.

    PubMed  CAS  Google Scholar 

  213. LeRoith D, Werner H, Beitner-Johnson D, Roberts Jr CT. Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr Rev. 1995;16(2):143–63.

    PubMed  CAS  Google Scholar 

  214. Massague J. TGF-beta signal transduction. Annu Rev Biochem. 1998;67:753–91.

    PubMed  CAS  Google Scholar 

  215. Lin SY, Morrison JR, Phillips DJ, de Kretser DM. Regulation of ovarian function by the TGF-beta superfamily and follistatin. Reproduction. 2003;126(2):133–48.

    PubMed  CAS  Google Scholar 

  216. Mathews LS, Vale WW. Expression cloning of an activin receptor, a predicted transmembrane serine kinase. Cell. 1991;65(6):973–82.

    PubMed  CAS  Google Scholar 

  217. ten Dijke P, Ichijo H, Franzén P, Schulz P, Saras J, Toyoshima H, et al. Activin receptor-like kinases: a novel subclass of cell-surface receptors with predicted serine/threonine kinase activity. Oncogene. 1993;8(10):2879–87.

    PubMed  CAS  Google Scholar 

  218. Lebrun JJ, Vale WW. Activin and inhibin have antagonistic effects on ligand-dependent heteromerization of the type I and type II activin receptors and human erythroid differentiation. Mol Cell Biol. 1997;17(3):1682–91.

    PubMed  CAS  Google Scholar 

  219. Chapman SC, Bernard DJ, Jelen J, Woodruff TK. Properties of inhibin binding to betaglycan, InhBP/p120 and the activin type II receptors. Mol Cell Endocrinol. 2002;196:79–93.

    PubMed  CAS  Google Scholar 

  220. Zhu J, Lin SJ, Zou C, Makanji Y, Jardetzky TS, Woodruff TK. Inhibin {alpha}-subunit N terminus interacts with activin type IB receptor to disrupt activin signaling. J Biol Chem. 2012;287(11):8060–70.

    PubMed  CAS  Google Scholar 

  221. Thompson TB, Lerch TF, Cook RW, Woodruff TK, Jardetzky TS. The structure of the follistatin: activin complex reveals antagonism of both type I and type II receptor binding. Dev Cell. 2005;9:535–43.

    PubMed  CAS  Google Scholar 

  222. di Clemente N, Wilson C, Faure E, Boussin L, Carmillo P, Tizard R, et al. Cloning, expression and alternative splicing of the receptor for anti- Müllerian hormone. Mol Endocrinol. 1994;8:1006–20.

    PubMed  Google Scholar 

  223. Visser JA, Olaso R, Verhoef-Post M, Kramer P, Themmen APN, Ingraham HA. The serine/threonine transmembrane receptor ALK2 mediates Müllerian inhibiting substance signaling. Mol Endocrinol. 2001;15:936–45.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjula K. Gupta PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gupta, M.K., Chia, SY. (2013). Ovarian Hormones: Structure, Biosynthesis, Function, Mechanism of Action, and Laboratory Diagnosis. In: Falcone, T., Hurd, W. (eds) Clinical Reproductive Medicine and Surgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6837-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6837-0_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6836-3

  • Online ISBN: 978-1-4614-6837-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics