The Neuropsychology of Sickle Cell Disease in Sub-Saharan Africa

Chapter
Part of the Specialty Topics in Pediatric Neuropsychology book series (STPN)

Abstract

Sickle cell disease (SCD) represents a major public health concern in West Africa and particularly in Cameroon. Cerebrovascular complications are a primary cause of mortality or persistent neurological and cognitive deficits in patients with SCD. Neuroradiological markers are unavailable to most children in Sub-Saharan Africa, and neuropsychological assessment may represent a reasonable, cost-effective, and sensitive means of detecting neurobehavioral deficits in these children who may, in turn, need urgent medical attention. This chapter presents a review of the first studies to explore the cognitive performance of Cameroonian children with SCD. Results show a high frequency of cognitive deficits in this population, with executive functions and attention being particularly vulnerable. Consistently with the brain/behavior omnibus concept of Boivin and Giordani (Progress in Brain Research 178: 113–135, 2009), patients with SCD in Cameroon demonstrated similar cognitive deficit profiles and developmental trends as patients with SCD in Western countries. Therefore, cognitive rehabilitation tools developed in resource-rich countries for children with SCD, if properly adapted, may be of benefit to children with the disease in West Africa.

Keywords

Fatigue Anemia Malaria Defend Clarification 

References

  1. Ardila, A. (2005). Cultural values underlying psychometric cognitive testing. Neuropsychological Review, 15(4), 185–195.CrossRefGoogle Scholar
  2. Ardila, A., & Moreno, S. (2001). Neuropsychological test performance in Aruaco Indians: An exploratory study. Journal of the International Neuropsychological Society, 7(4), 510–515.PubMedCrossRefGoogle Scholar
  3. Berkelhammer, L. D., Williamson, A. L., Sanford, S. D., Dirksen, C. L., Sharp, W. G., Margulies, A. S., et al. (2007). Neurocognitive sequelae of pediatric sickle cell disease: A review of the literature. Child Neuropsychology, 13(2), 120–131.PubMedCrossRefGoogle Scholar
  4. Bernaudin, F., Verlhac, S., Freard, F., Roudot-Thoraval, F., Benkerrou, M., Thuret, I., et al. (2000). Multicenter prospective study of children with sickle cell disease radiographic and psychometric correlation. Journal of Child Neurology, 15(5), 333–343.PubMedCrossRefGoogle Scholar
  5. Boivin, M. J., & Giordani, B. (2009). Neuropsychological assessment of African children evidence for a universal brain/behavior omnibus within a coconstructivist paradigm. Progress in Brain Research, 178, 113–135.PubMedCrossRefGoogle Scholar
  6. Boone, K. B., Victor, T. L., Wen, J., Razani, J., & Ponton, M. (2007). The association between neuropsychological scores and ethnicity, language, and acculturation variables in a large patient population. Archives of Clinical Neuropsychology, 22(8), 1013–1014.CrossRefGoogle Scholar
  7. Brocki, K. C., & Bohlin, G. (2004). Executive functions in children aged 6 to 13 a dimensional and developmental study. Developmental Neuropsychology, 26(2), 571–593.PubMedCrossRefGoogle Scholar
  8. Cameroonian Ministry of Public Health (2005). Plan Stratégique National de Lutte contre la Drépanocytose au Cameroun.Google Scholar
  9. Conners, C. K. (1994). Conners’ Continuous Performance Test. User’s manual. Toronto, ON: Multi-Health Systems.Google Scholar
  10. D’Elia, L. F., Satz, P., Uchiyama, C. L., & White, T. (1994). Color trails test 1 & 2. Odessa, FL: Psychological Assessment Resources.Google Scholar
  11. Dasen, P. R., & Heron, A. (1981). Cross-cultural tests of Piaget’s theory. In H. C. Triandis & A. Heron (Eds.), Handbook of cross-cultural psychology (Developmental psychology, Vol. 4, pp. 295–342). Boston: Allyn & Bacon.Google Scholar
  12. DeBaun, M. R., Schatz, J., Siegel, M. J., Koby, M., Craft, S., Resar, L., et al. (1998). Cognitive screening examinations for silent cerebral infarcts in sickle cell disease. Neurology, 50(6), 1678–1682.PubMedCrossRefGoogle Scholar
  13. Delis, D. C., Kramer, J. H., Kaplan, E., & Ober, B. A. (1994). California Verbal Learning Test – Children’s version. San Antonio, TX: Psychological Corporation.Google Scholar
  14. Gaddes, W. H., & Crockett, D. J. (1975). The Spreen-Benton aphasia tests, normative data as a measure of normal language development. Brain and Language, 2, 257–280.PubMedCrossRefGoogle Scholar
  15. Gauthier, L., Dehaut, F., & Joanette, Y. (1989). The bells test: A quantitative and qualitative test for visual neglect. Journal of Clinical and Experimental Neuropsychology, 11, 49–54.Google Scholar
  16. Holding, P. A., Taylor, H. G., Kazungu, S. D., Mkala, T., Gona, J., Mwamuye, B., et al. (2004). Assessing cognitive outcomes in a rural African population: Development of a neuropsychological battery in Kilifi District, Kenya. Journal of the International Neuropsychological Society, 10(2), 246–260.PubMedCrossRefGoogle Scholar
  17. Kaufman, A. S., & Kaufman, N. L. (1983). Kaufman assessment battery for children. Circle Pines, MN: American Guidance Service.Google Scholar
  18. King, A. A., DeBaun, M. R., & White, D. A. (2008). Need for cognitive rehabilitation for children with sickle cell disease and strokes. Expert Review of Neurotherapeutics, 8(2), 291–296.PubMedCrossRefGoogle Scholar
  19. King, A. A., White, D. A., McKinstry, R. C., Noetzel, M., & DeBaun, M. R. (2007). A pilot randomized education rehabilitation trial is feasible in sickle cell and strokes. Neurology, 68(23), 2008–2011.PubMedCrossRefGoogle Scholar
  20. Kral, M. C., Brown, R. T., Connelly, M., Cure, J. K., Besenski, N., Jackson, S. M., et al. (2006). Radiographic predictors of neurocognitive functioning in pediatric Sickle Cell disease. Journal of Child Neurology, 21(1), 37–44.PubMedCrossRefGoogle Scholar
  21. Lehto, J. E., Juujärvi, P., Kooistra, L., & Pulkkinen, L. (2003). Dimensions of executive functioning: Evidence from children. The British Journal of Developmental Psychology, 21(1), 59–80.CrossRefGoogle Scholar
  22. Li, S. C. (2003). Biocultural orchestration of developmental plasticity across levels: The interplay of biology and culture in shaping the mind and behavior across the life span. Psychological Bulletin, 129(2), 171–194.PubMedCrossRefGoogle Scholar
  23. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100.PubMedCrossRefGoogle Scholar
  24. Moser, F. G., Miller, S. T., Bello, J. A., Pegelow, C. H., Zimmerman, R. A., Wang, W. C., et al. (1996). The spectrum of brain MR abnormalities in sickle-cell disease a report from the Cooperative Study of Sickle Cell Disease. American Journal of Neuroradiology, 17(5), 965–972.PubMedGoogle Scholar
  25. Nisbett, R. E., Peng, K., Choi, I., & Norenzayan, A. (2001). Culture and systems of thought: Holistic vs. analytic cognition. Psychological Review, 108, 291–310.PubMedCrossRefGoogle Scholar
  26. Njamnshi, A. K., Mbong, E. N., Wonkam, A., Ongolo-Zogo, P., Djientcheu, V. D., Sunjoh, F. L., et al. (2006). The epidemiology of stroke in sickle cell patients in Yaounde, Cameroon. Journal of the Neurological Sciences, 250(1–2), 79–84.PubMedCrossRefGoogle Scholar
  27. Obama, M. T., Dongmo, L., Nkemayim, C., Mbede, J., & Hagbe, P. (1994). Stroke in children in Yaounde, Cameroon. Indian Pediatrics, 31(7), 791–795.PubMedGoogle Scholar
  28. Park, D. C., & Huang, C. M. (2010). Culture wires the brain: A cognitive neuro-science ­perspective. Perspectives on Psychological Science, 5(4), 391–400.PubMedCrossRefGoogle Scholar
  29. Piaget, J., & Inhelder, B. (1941). Le développement des quantités chez l’enfant: Conservation et atomisme. Neuchâtel & Paris: Delachaux et Niestlé.Google Scholar
  30. Reis, A., & Castro-Caldas, A. (1997). Illiteracy: A cause for biased cognitive development. Journal of the International Neuropsychological Society, 3, 444–450.PubMedGoogle Scholar
  31. Roberts, R. J., & Pennington, B. F. (1996). An interactive framework for examining prefrontal processes. Developmental Neuropsychology, 12(1), 105–126.CrossRefGoogle Scholar
  32. Rosselli, M., & Ardila, A. (2003). The impact of culture and education on non-verbal neuropsychological measurements a critical review. Brain and Cognition, 52(3), 326–333.PubMedCrossRefGoogle Scholar
  33. Ruffieux, N., Njamnshi, A. K., Mayer, E., Sztajzel, R., Eta, S. C., Doh, R. F., et al. (2009). Neuropsychology in Cameroon: First normative data for cognitive tests among school-aged children. Child Neuropsychology, 16(1), 1–19.PubMedCrossRefGoogle Scholar
  34. Ruffieux, N., Njamnshi, A. K., Wonkam, A., Hauert, C. A., Chanal, J., Verdon, V., et al. (2013). Association between biological markers of sickle cell disease and cognitive functioning amongst Cameroonian children. Child Neuropsychology, 19(2),143–160.Google Scholar
  35. Schatz, J., Brown, R. T., Pascual, J. M., Hsu, L., & DeBaun, M. R. (2001). Poor school and cognitive functioning with silent cerebral infarcts and sickle cell disease. Neurology, 56(8), 1109–1111.PubMedCrossRefGoogle Scholar
  36. Schatz, J., Finke, R. L., Kellett, J. M., & Kramer, J. H. (2002). Cognitive functioning in children with sickle cell disease: A meta-analysis. Journal of Pediatric Psychology, 27(8), 739–748.PubMedCrossRefGoogle Scholar
  37. Schatz, J., & Roberts, C. W. (2005). Short-term memory in children with sickle cell disease: Executive versus modality-specific processing deficits. Archives of Clinical Neuropsychology, 20(8), 1073–1085.PubMedCrossRefGoogle Scholar
  38. Skuy, M., Taylor, M., O’Carroll, S., Fridjhon, P., & Rosenthal, L. (2000). Performance of black and white South African children on the Wechsler Intelligence Scale for Children-Revised and the Kaufman Assessment Battery. Psychological Reports, 86(3 Pt 1), 727–737.PubMedCrossRefGoogle Scholar
  39. Steen, R. G., Miles, M. A., Helton, K. J., Strawn, S., Wang, W., Xiong, X., et al. (2003). Cognitive impairment in children with hemoglobin SS sickle cell disease: Relationship to MR imaging findings and hematocrit. American Journal of Neuroradiology, 24(3), 382–389.PubMedGoogle Scholar
  40. Sternberg, R. J., & Grigorenko, E. L. (2002). Dynamic testing. New York: Cambridge University Press.Google Scholar
  41. Tiffin, J., & Asher, E. J. (1948). The Purdue Pegboard: Norms and studies of reliability and validity. The Journal of Applied Psychology, 32(3), 234–247.PubMedCrossRefGoogle Scholar
  42. Uzzell, B. P., Pontón, M. O., & Ardila, A. (Eds.). (2007). International handbook of cross-cultural neuropsychology. Mahwah, NJ: Lauwrence Erlbaum.Google Scholar
  43. Weatherall, D. J., & Clegg, J. B. (2001). Inherited haemoglobin disorders: An increasing global health problem. Bulletin of the World Health Organization, 79(8), 704–712.PubMedGoogle Scholar
  44. Wechsler, D. (2003). WISC-IV administrative and scoring manual. San Antonio, TX: The Psychological Corporation.Google Scholar
  45. White, D. A., Moinuddin, A., McKinstry, R. C., Noetzel, M., Armstrong, M., & DeBaun, M. (2006). Cognitive screening for silent cerebral infarction in children with sickle cell disease. Journal of Pediatric Hematology/Oncology, 28(3), 166–169.PubMedCrossRefGoogle Scholar
  46. Yerys, B. E., White, D. A., Salorio, C. F., McKinstry, R., Moinuddin, A., & DeBaun, M. (2003). Memory strategy training in children with cerebral infarcts related to sickle cell disease. Journal of Pediatric Hematology/Oncology, 25, 495–498.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Faculty of Psychology and Educational SciencesUniversity of GenevaGeneve 4Switzerland

Personalised recommendations