Skip to main content

Introduction

  • Chapter
  • First Online:
Distributed Space-Time Coding

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

  • 739 Accesses

Abstract

This chapter provides a brief introduction to background materials. First, multiple-antenna system and space-time coding are reviewed in Sect. 1.1. Then we explain the motivation of cooperative relay network and a few widely used cooperative schemes in Sect. 1.2. In Sect. 1.3, we define and discuss in detail diversity order, a performance measure for reliability. A brief introduction on channel training in multiple-antenna system and relay network is provided in Sect. 1.4. In the last section of this chapter, notation used in this book are explained. References on space-time coding, cooperative relay network, and training in multiple-antenna system and cooperative relay network are provided at the end for the benefit of interested readers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alamouti SM (1998) A simple transmitter diversity scheme for wireless communications. IEEE J on Selected Areas in Communications, 16:1451–1458.

    Article  Google Scholar 

  2. Azarian K, Gamal HE, and Schniter P (2005) On the achievable diversity-multiplexing tradeoff in half-duplex cooperative channels. IEEE T on Information Theory, 51:4152–4172.

    Article  Google Scholar 

  3. Bahceci I, Duman TM, and Altunbasak Y (2003) Antenna selection for multiple-antenna transmission systems: performance analysis and code construction, IEEE T Information Theory, 49:2669–2681.

    Article  MathSciNet  Google Scholar 

  4. Biguesh M and Gershman AB (2006) Training-based MIMO channel estimation: A study of estimator tradeoffs and optimal training signals. IEEE T on Signal Processing, 54:884–893.

    Article  Google Scholar 

  5. Bletsas A, Reed DP, and Lippman A (2006) A simple cooperative diversity method based on network path selection. IEEE J on Selected Areas in Communications, 24:659–672.

    Article  Google Scholar 

  6. Bletsas A, Shin H, and Win MZ (2007) Outage optimality of opportunistic amplify-and-forward relaying. IEEE Communications L, 11:261–263.

    Article  Google Scholar 

  7. Chizhik D, Foschini GJ, and Gans MJ (2002) Keyholes, correlations, and capacities of multielement transmit and receive antennas. IEEE T on Wireless Communications, 1:361–368.

    Article  Google Scholar 

  8. Chuah CN, Tse D, and Kahn JM (2002) Capacity scaling in MIMO wireless systems under correlated fading. IEEE T on Information Theory, 48:637–650.

    Article  MathSciNet  MATH  Google Scholar 

  9. Duman TM and Ghrayeb A (2007) Coding for MIMO communication systems. Wiley.

    Google Scholar 

  10. Gao F, Cui T, and Nallanathan A (2008) On channel estimation and optimal training design for amplify and forward relay networks. IEEE T Wireless Communications, 7:1907–1916.

    Article  Google Scholar 

  11. F. Dana A and Hassibi B (2006) On the power-efficiency of sensory and ad-hoc wireless networks. IEEE T on Information Theory, 62:2890–2914.

    Google Scholar 

  12. Foschini GJ (1996) Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Technical J, 1:41–59.

    Article  Google Scholar 

  13. Gastpar M and Vetterli M (2002) On the capacity of wireless networks: the relay case. IEEE Infocom, 3:1577–1586.

    Google Scholar 

  14. Gedik B and Uysal M (2009) Impact of imperfect channel estimation on the performance of amplify-and-forward relaying. IEEE T on Wireless Communications, 8:1468–1479.

    Article  Google Scholar 

  15. Gharavi-Alkhansari M and Greshman A (2004) Fast antenna selection in MIMO systems. IEEE T Signal Processing, 52:339–347.

    Article  Google Scholar 

  16. Gorokhov A (2003) Receive antenna selection for MIMO spatial multiplexing: theory and algorithms, IEEE T Signal Processing, 51:2796–2807.

    Article  MathSciNet  Google Scholar 

  17. Gomadam KS and Jafar SA (2007) Optimal relay functionality for SNR maximization in memoryless relay networks. IEEE J on Selected Areas in Communications, 25:390–401.

    Article  Google Scholar 

  18. Hassibi B and Hochwald BM (2003) How much training is needed in multiple-antenna wireless links? IEEE T on Information Theory, 49:951–963.

    Article  MathSciNet  MATH  Google Scholar 

  19. Havary-Nassab V, Shahbazpanahi S, Grami A, and Luo ZQ (2008) Distributed beamforming for relay networks based on second-order statistics of the channel state information. IEEE T Signal Processing, 56:4306–4316.

    Article  MathSciNet  Google Scholar 

  20. Heath RW Jr., Sandhu S, and Paulraj A (2001) Antenna selection for spatial multiplexing systems with linear receivers. IEEE Communications L, 5:142–144.

    Article  Google Scholar 

  21. Hochwald BH and Marzetta TL (2000) Unitary space-time modulation for multiple-antenna communication in Rayleigh flat-fading. IEEE T on Information Theory, 46:543–564.

    Article  MathSciNet  MATH  Google Scholar 

  22. Hochwald BH and Sweldens W (2000) Differential unitary space-time modulation. IEEE T on Communications, 48:2041–2052.

    Article  Google Scholar 

  23. Hughes B (2000) Differential space-time modulation. IEEE T on Information Theory, 46:2567–2578.

    Article  MATH  Google Scholar 

  24. Jafar A and Goldsmith A (2004) Transmitter optimization and optimality of beamforming for multiple antenna systems. IEEE T Wireless Communications, 3:1165–1175.

    Article  Google Scholar 

  25. Janani M, Hedayat A, Hunter TE, and Nosratinia A (2006) Coded cooperation in wireless communications: space-time transmission and iterative decoding. IEEE T on Signal Processing, 54:362–371.

    Google Scholar 

  26. Jing Y and Hassibi B (2006) Distributed space-time coding in wireless relay networks. IEEE T on Wireless Communications, 5:3524–3536.

    Article  Google Scholar 

  27. Jing Y and Hassibi B (2008) Cooperative diversity in wireless relay networks with multiple-antenna nodes. EURASIP J on Advanced Signal Process, doi: 10.1155/2008/254573.

    Google Scholar 

  28. Jing Y and Jafarkhani H (2007) Using orthogonal and quasi-orthogonal designs in wireless relay networks. IEEE T on Information Theory, 53:4106–4118.

    Article  MathSciNet  Google Scholar 

  29. Jing Y and Jafarkhani H (2008) Distributed differential space-time coding in wireless relay networks. IEEE T on Communications, 56:1092–1100.

    Article  Google Scholar 

  30. Jing Y and Jafarkhani H (2009) Network beamforming using relays with perfect channel information. IEEE T on Information Theory, 55:2499–2517.

    Article  MathSciNet  Google Scholar 

  31. Jing Y and Jafarkhani H (2009) Single and multiple relay selection schemes and their diversity orders. IEEE T. on Wireless Communications, 8:1414–1423.

    Article  Google Scholar 

  32. Jing Y and Yu X (2012) ML channel estimations for non-regenerative MIMO relay networks. IEEE J on Selected Areas in Communications, 30:1428–1439.

    Article  Google Scholar 

  33. Kay SM (1993) Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory, Prentice Hall.

    Google Scholar 

  34. Kiran T and Rajan BS (2007) Partial-coherent distributed space-time codes with differential encoder and decoder. IEEE J on Selected Areas in Communications, 25:426–433.

    Article  Google Scholar 

  35. Kong T and Hua Y (2011) Optimal design of source and relay pilots for MIMO relay channel estimation. IEEE T on Signal Processing, 59:4438–4446.

    Article  MathSciNet  Google Scholar 

  36. Koyuncu E, Jing Y, and Jafarkhani H (2008) Distributed beamforming in wireless relay networks with quantized feedback, IEEE J on Selected Areas in Communications, 26:1429–1439.

    Article  Google Scholar 

  37. Laneman JN and Wornell GW (2003) Distributed space-time-coded protocols for exploiting cooperative diversity in wireless network. IEEE T on Information Theory, 49:2415–2425.

    Article  MathSciNet  Google Scholar 

  38. Lapidoth A and Shamai A (2002) Fading channels: How perfect need perfect side information be? IEEE T Information Theory, 48:1118–1134.

    Article  MathSciNet  MATH  Google Scholar 

  39. Larsson P (2003), Large-scale cooperative relaying network with optimal combining under aggregate relay power constraint. Future Telecommunications Conference.

    Google Scholar 

  40. Li C and Wang X (2008) Cooperative multibeamforming in ad hoc networks. EURASIP J on Advances in Signal Processing, doi:10.1155/2008/310247.

    Google Scholar 

  41. Love DJ, Heath RW Jr, and Strohmer T (2003) Grassmannian beamforming for multiple-input multiple-output wireless systems. IEEE T on Information Theory, 49:2735–2747.

    Article  Google Scholar 

  42. Mallik RK and Win MZ (2002) Analysis of hybrid selection/maximal-ratio combining in correlated Nakagami Fading. IEEE T Communications, 50:1372–1383.

    Article  Google Scholar 

  43. Maric I and Yates RD (2010) Bandwidth and power allocation for cooperative strategies in Gaussian relay networks. IEEE T on Information Theory, 56:1880–1889.

    Article  MathSciNet  Google Scholar 

  44. Marzetta TL and Hochwald BH (1999) Capacity of a mobile multiple-antenna communication link in Rayleigh flat-fading. IEEE T on Information Theory, 45:139–157.

    Article  MathSciNet  MATH  Google Scholar 

  45. Medard M (2000) The effect upon channel capacity in wireless communications of perfect and imperfect knowledge of the channel. IEEE T Information Theory, 46:933–946.

    Article  MATH  Google Scholar 

  46. Mheidat H and Uysal M (2007) Non-coherent and mismatched-coherent receivers for distributed STBCs with amplify-and-forward relaying. IEEE T on Wireless Communications, 6:4060–4070.

    Article  Google Scholar 

  47. Molisch AF, Win MZ, Choi YS, and Winters JH (2005) Capacity of MIMO systems with antenna selection, IEEE T Wireless Communications, 4:1759–1772.

    Article  Google Scholar 

  48. Mukkavilli KK, Sabharwal A, Erkip E, and Aazhang B (2003) On beamforming with finite rate feedback in multiple-antenna systems. IEEE T Information Theory, 49:2562–2579.

    Article  MathSciNet  Google Scholar 

  49. Nabar RU, Bolcskei H, and Kneubuhler FW (2004) Fading relay channels: Performance limits and space-time signal design. IEEE J on Selected Areas in Communications, 22:1099–1109.

    Article  Google Scholar 

  50. Narasimhan R (2006) Finite-SNR diversity-multiplexing tradeoff for correlated Rayleigh and Rician MIMO channels. IEEE T on Information Theory, 52:3965–3979.

    Article  MathSciNet  Google Scholar 

  51. Narula A, Lopez MJ, Trott MD, and Wornell GW (1998) Efficient use of side information in multiple-antenna data transmission over fading channels. IEEE J on Selected Areas in Communications, 16:1423–1436.

    Article  Google Scholar 

  52. Oggier F and Hassibi B (2010) Cyclic distributed space-time codes for wireless networks with no channel information. IEEE T on Information Theory, 56:250–265.

    Article  MathSciNet  Google Scholar 

  53. Rajan GS and Rajan BS (2007) Non-coherent low-decoding-complexity space-time codes for wireless relay networks, IEEE International Symposium on Information Theory, 1521–1525.

    Google Scholar 

  54. Ribeiro A, Cai X, and Giannakis GB (2005) Symbol error probabilities for general cooperative links. IEEE T on Wireless Communications, 4:1264–1273.

    Article  Google Scholar 

  55. Sanayei S and Nosratinia A (2004) Antenna selection in MIMO systems. IEEE Communication M, 42:68–73.

    Article  Google Scholar 

  56. Sanayei S and Nosratinia A (2007) Capacity of MIMO channels with antenna selection, IEEE T Information Theory, 53:4356–4362.

    Article  MathSciNet  Google Scholar 

  57. Sendonaris A, Erkip E, and Aazhang B (2003) User cooperation diversity-Part I: System description. IEEE T on Communications, 51:1927–1938.

    Article  Google Scholar 

  58. Sendonaris A, Erkip E, and Aazhang B (2003) User cooperation diversity-Part II: Implementation aspects and performance analysis. IEEE T on Communications, 51:1939–1948.

    Article  Google Scholar 

  59. Shiu DS, Foschini G, Gans M, and Kahn J (2000) Fading correlations and effect on the capacity of multielement antenna systems. IEEE T on Communications, 48:502–512.

    Article  Google Scholar 

  60. Sun S and Jing Y (2011) Channel training design in amplify-and-forward MIMO relay networks. IEEE T on Wireless Communications, 10:3380–3391.

    Article  Google Scholar 

  61. Sun S and Jing Y (2012) Training and decoding for cooperative network with multiple relays and receive antennas. IEEE T on Communications, 50:1534–1544.

    Article  Google Scholar 

  62. Tang X and Hua Y (2007) Optimal design of non-regenerative MIMO wireless relays. IEEE T on Wireless Communications, 6:1398–1407.

    Article  Google Scholar 

  63. Taricco G and Biglieri E (2005) Space-time decoding with imperfect channel estimation. IEEE T on Wireless Communications, 4:1874–1888.

    Article  Google Scholar 

  64. Tarokh V, Naguib A, Seshadri N, and Calderbank AR (1999) Space-time codes for high-data-rate wireless communication: Performance criteria in the presence of channel estimation errors, mobility, and multiple paths. IEEE T on Communications, 47:199–207.

    Article  MATH  Google Scholar 

  65. Tarokh V, Seshadri N, and Calderbank AR (1998) Space-time codes for high data rate wireless communication: performance criterion and code construction. IEEE T on Information Theory, 44:744–765.

    Article  MathSciNet  MATH  Google Scholar 

  66. Telatar IE (1999) Capacity of multi-antenna Gaussian channels. European T on Telecommunications, 10:585–595.

    Article  Google Scholar 

  67. Tong L, Sadler BM, and Dong M (2004) Pilot-assisted wireless transmissions. IEEE T on Signal Processing, 21:12–25.

    Article  Google Scholar 

  68. Vosoughi A and Scaglione A (2006) Everything you always wanted to know about training: Guidelines derived using the affine precoding framework and the CRB. IEEE T on Signal Processing, 54:940–954.

    Article  Google Scholar 

  69. Wittneben A (1993) A new bandwidth efficient transmit antenna modulation diversity scheme for linear digital modulation. IEEE International Conference on, Communications, 1630–1634.

    Google Scholar 

  70. Yilmaz E and Sunay MO (2007) Amplify-and-forward capacity with transmit beamforming for MIMO multiple-relay channels. IEEE Globecom Conference, 3873–3877.

    Google Scholar 

  71. Yoo T and Goldsmith A (2006) Capacity and power allocation for fading MIMO channels with channel estimation error. IEEE T on Information Theory, 52:2203–2214.

    Article  MathSciNet  Google Scholar 

  72. Zhao Y, Adve R, and Lim TJ (2007) Beamforming with limited feedback in amplify-and-forward cooperative networks. IEEE Globecom Conference, 3457–3461.

    Google Scholar 

  73. Zhao Y, Adve R, and Lim TJ (2007) Improving amplify-and-forward relay networks: Optimal power allocation versus selection. IEEE T on Wireless Communications, 6:3114–3122.

    Google Scholar 

  74. Zhao Y, Adve R, and Lim TJ (2006) Symbol error rate of selection amplify-and-forward relay systems. IEEE Communications L, 10:757–759.

    Article  Google Scholar 

  75. Zheng L and Tse D (2002) Communication on the Grassman manifold: a geometric approach to the noncoherent multiple-antenna channel. IEEE T on Information Theory, 48:359–383.

    Article  MathSciNet  MATH  Google Scholar 

  76. Zheng L and Tse D (2003) Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels. IEEE T on Information Theory, 49:1072–1096.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yindi Jing .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Jing, Y. (2013). Introduction. In: Distributed Space-Time Coding. SpringerBriefs in Computer Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6831-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6831-8_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6830-1

  • Online ISBN: 978-1-4614-6831-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics