Open Problems on Search Games

  • Robbert Fokkink
  • Leonhard Geupel
  • Kensaku Kikuta


We discuss two classic search games: Isaacs’ princess and monster game, and Dresher’s high-low guessing game. Despite the fact that these games were introduced decades ago, there are still numerous open problems around them.


Mixed Strategy Pure Strategy Strategy Space Binary Search Tree Arbitrary Initial Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. Alpern, Search for point in interval, with high-low feedback, Math. Proc. Camb. Phil. Soc. 98 (1985), 569–578.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    S. Alpern, R. Fokkink, R. Lindelauf, and G. J. Olsder. Numerical Approaches to the ‘Princess and Monster’ Game on the Interval, Annals Soc. Dynamic Games 10 (2009), 1–9.MathSciNetGoogle Scholar
  3. 3.
    B. Bollobás, The art of mathematics, coffee time in Memphis, Cambridge University Press, 2006.MATHCrossRefGoogle Scholar
  4. 4.
    A. Bonato, R.J. Nowakowski, The game of cops and robbers on graphs, American Mathematical Society, 2011.Google Scholar
  5. 5.
    M. Dresher, Games of Strategy: theory and application, Prentice Hall, 1961.Google Scholar
  6. 6.
    T.S.Ferguson, A problem of minimax estimation with directional information, Statistics and Probability Letters 26 (1996), 205–211.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    R.J. Fokkink, Tossing coins to guess a secret number, Amer. Math. Monthly 119 no. 4 (2012), 337–339.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    R.J. Fokkink, M. Stassen, An asymptotic solution of Dresher’s guessing game, Gamesec 2011, LNCS 7037 (2011), 104–116.Google Scholar
  9. 9.
    S. Gal, Search Games, Academic Press, New York 1980.MATHGoogle Scholar
  10. 10.
    L. Geupel, The ‘Princess and Monster’ Game on an Interval, BSc thesis, TU München (2011),
  11. 11.
    R. Isaacs, Differential games, John Wiley and Sons, New York, 1965.MATHGoogle Scholar
  12. 12.
    Gilbert, E.: Games of identification and convergence, SIAM Rev., vol. 4 (1), 16–24 (1962).CrossRefGoogle Scholar
  13. 13.
    S. Johnson, A search game, in Advances in Game Theory, M. Dresher, L.S. Shapley, A.W. Tucker (eds), Princeton University press, Princeton 1964, 39–48.Google Scholar
  14. 14.
    J.E. Littlewood, A mathematician’s miscellany, ed. B. Bollobás, Cambridge University Press, 1986.Google Scholar
  15. 15.
    A. Pelc, Searching games with errors - fifty years of coping with liars, Theoretical Computer Science 270 (2002), 71–109.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    S. Ulam, Adventures of a Mathematician, Scribner, New York, 1976.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Robbert Fokkink
    • 1
  • Leonhard Geupel
    • 2
  • Kensaku Kikuta
    • 3
  1. 1.Department of Applied MathematicsTU DelftDelftThe Netherlands
  2. 2.Department of MathematicsTU MünchenGarchingGermany
  3. 3.Department of Strategic ManagementUniversity of HyogoKobe-shiJapan

Personalised recommendations