Skip to main content

Alternate Structures for Nanoelectronic Applications

  • Chapter
  • First Online:
  • 1738 Accesses

Abstract

In this chapter, a review of the alternate MOS structures at the nanoscale has been done. Various potential candidates have been discussed as a replacement to the conventional MOS structures such as dual gate, multiple gate, or quantum devices such as single-electron transistors or the ballistic devices or more recently the molecular electronic devices. This exploration is becoming more and more a strenuous exercise as the conventional MOS devices are failing due to the nanoscale effects as discussed in the earlier chapters and the underlying problems of the new devices which are being explored.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. ITRS (2010) www.itrs.org

  2. Pregaldiny F, Lallement C, Grabinski W, Kammerer JB, Mathiot D (2003) An analytical quantum model for the surface potential of deep sub micron MOSFETs, 10th international conference on Mixed Design Integrated Circuits and Systems (MIXDES’03), June 2003

    Google Scholar 

  3. Weimin Wu, Xin Li, Gennady Gildenblat, Workman Glenn (Chip) O, Surya Veeraraghavan, McAndrew Colin C, Ronald van Langevelde, Smit Geert DJ, Scholten Andries J, Dirk B, Klaassen M (2007) A compact model for valence-band electron tunneling current in partially depleted SOI MOSFETs, IEEE T Electron Dev, 54(2): 316–322

    Google Scholar 

  4. Tomaszewski D, Lukasiak L, Domanski K, Jakubowski A (2002) Small-signal model of partially-depleted SOI MOSFETs and its parameter extraction, Proceedings of the fourth IEEE international Caracas conference on Devices, Circuits and Systems, pp D023-1–D023-4

    Google Scholar 

  5. Wu W, Li X, Gildenblat G, Workman G, Veeraraghavan S, McAndrew C, Van Langevelde R, Smit GDJ, Scholten AJ, Klaassen DBM, Watts J (2007) PSP-SOI: an advanced surface potential based compact model of partially depleted SOI MOSFETs for circuit simulations, IEEE custom integrated circuits conference,pp 41–48

    Google Scholar 

  6. Lee MSL, Tenbroek BM, Redman-White W, Benson J, Uren MJ (2001) A physically based compact model of partially depleted SOI MOSFETs for analog circuit simulation. IEEE J Solid-St Circ 36(1):110–121

    Article  Google Scholar 

  7. Sheu C-J, Jang S-L (2000) A physics-based electron gate current model for fully depleted SOI MOSFETs. Solid State Electron 44(10):1799–1806

    Article  Google Scholar 

  8. Nirmal, Thomas DM, Shruti K, Samuel PC, Kumar V, Mohan kumar (2011) Impact of gate engineering on double gate MOSFETs using high-κ dielectrics, 3rd international conference on Electronics Computer Technology, vol 1, pp 31–34

    Google Scholar 

  9. Poljak M, Jovanovic V, Suligoj T (2010) Surface-potential-based compact model for quantum effects in planar and double-gate MOSFET, Proceedings of the 33rd international convention MIPRO,May 2010 pp 48–53

    Google Scholar 

  10. Ray Biswajit, Shubhakar, Mahapatra Santanu (2007) Necessity for quantum mechanical simulation for the future technology nodes necessity for quantum mechanical simulation for the future technology nodes, 14th international workshop on the physics of semiconductor devices, pp 1–4

    Google Scholar 

  11. Dutta P, Syamal B, Mohankumar N, Sarkar CK (2011) A surface potential based drain current model for asymmetric double gate MOSFETs. Solid State Electron 56(1):148–154

    Article  Google Scholar 

  12. He Jin, Liu Feng, Zhou Xing-Ye, Zhang Jian, Zhang, Li-Ning (2011) A continuous analytic channel potential solution to doped symmetric double-gate MOSFETs from the accumulation to the strong-inversion region Chinese Phys B, 20(1): 016102

    Google Scholar 

  13. Lundstrom M, Zhibin Ren, Datta S (2000) Essential physics of carrier transport in nanoscale MOSFETs, International conference on Simulation of Semiconductor Processes and Devices, pp 1–5

    Google Scholar 

  14. Gildenblat G, Cai X, Chen T-L, Gu X, Wang H (2003) Reemergence of the surface-potential-based compact MOSFET models. Institute of Electrical and Electronics Engineers, New York

    Google Scholar 

  15. Varpula A, Lebedeva N, Kuivalainen P (2011) A compact quantum statistical model for the ballistic nanoscale MOSFETs. Phys status solidi (a) 208(7):1726–1732

    Article  Google Scholar 

  16. Mugnaini G, Iannaccone G (2005) Physics-based compact model of nanoscale MOSFETs—part I: transition from drift-diffusion to ballistic transport. IEEE T Electron Dev 52(8):1795–1801

    Article  Google Scholar 

  17. Wang H, Gildenblat G (2002) Scattering matrix based compact MOSFET model, International electron devices meeting, pp 125–128

    Google Scholar 

  18. Bude JD (2000) MOSFET modeling into the ballistic regime International conference on Simulation of Semiconductor Processes and Devices, pp 23–26

    Google Scholar 

  19. Rahman A, Klimeck G, Boykin TB, Lundstrom M (2004) Bandstructure effects in ballistic nanoscale MOSFETs, IEEE international electron devices meeting, pp 139–142

    Google Scholar 

  20. Saint Martin J, Aubry-Fortuna V, Bournel A, Dollfus P, Galdin S, Chassat C (2004) Influence of ballistic effects in ultra-small MOSFETs, International workshop on computational electronics, pp 32–33

    Google Scholar 

  21. El Sabbagh M, Fikry W, Omar OA (2009) Quantum compact model for ballistic double gate MOSFETs, 4th international conference on Design and Technology of Integrated Systems in Nanoscal Era, pp 144–146

    Google Scholar 

  22. Jing Guo, Datta S, Lundstrom M, Brink M, McEuen P, JaveyA, Hongjie Dai, Hyoungsub Kim, McIntyre P (2002) Assessment of Si MOS and Carbon Nanotube FET performance limits using a general theory of ballistic transistors,International electron devices meeting, pp 711–714

    Google Scholar 

  23. Ren Z, Venugopal R, Goasguen S, Datta S, Lundstrom MS (2003) nanoMOS 2.5: a two-dimensional simulator for quantum transport in double-gate MOSFETs. IEEE T Electron Dev 50(9):1914–1925

    Article  Google Scholar 

  24. Bounouar MA, Beaumont A, Calmon F, Drouin D (2012) On the use of nanoelectronic logic cells based on metallic single electron transistors, 13th international conference on Ultimate Integration on Silicon (ULIS), pp 157–160

    Google Scholar 

  25. Xiaobao Chen, Zuocheng Xing, Bingcai Sui (2011) A model for energy quantization of single-electron transistor below 10 nm, 2011 I.E. 9th international conference on ASIC (ASICON), pp 531–534

    Google Scholar 

  26. Boubaker A, Troudib M, Sghaierb N, Souifi A, Baboux N, Kalboussi A (2008) A SPICE model for single electron transistor applications at low temperatures: inverter and ring oscillator, 3rd international conference on Design and Technology of Integrated Systems in Nanoscale Era, pp 1–4

    Google Scholar 

  27. Fiori G, Pala MG, Iannaccone G (2005) Three-dimensional simulation of single electron transistors. IEEE T Nanotechnology 4(4):415–421

    Article  Google Scholar 

  28. Miyaji K, Saitoh M, Hiramoto T (2006) Compact analytical model for room-temperature-operating Si single-electron transistors with discrete quantum energy levels. IEEE T Nanotechnology 5(3):167–173

    Article  Google Scholar 

  29. Ismail MYA, AbdelRassoul RA (2006) A new simple model for the Single-Electron Transistor (SET), The 2006 international conference on MEMS, NANO and Smart Systems, pp 7–10

    Google Scholar 

  30. Kwon-Chil Kang, Sangwoo Kang, Hong Sun Yang, Seung-hwan Song, Jinho Kim, Jong Duk Lee, Byung-Gook Park (2007) Poly-Si quantum dot single electron transistors, International semiconductor device research symposium, pp 1–2

    Google Scholar 

  31. Karimian M, Dousti M, Pouyan M, Faez R (2009) An improved macro-model for simulation of Single Electron Transistor (SET) using HSPICE, IEEE Toronto International Conference Science and Technology for Humanity (TIC-STH),Sept 2009, pp 1000–1004

    Google Scholar 

  32. Beaumont A, Dubuc C, Beauvais J, Drouin D (2009) Room temperature single-electron transistor featuring gate-enhanced ON-state current. IEEE Electron Devic Lett 30(7):766–768

    Article  Google Scholar 

  33. Rasmi A, Hashim U, Awang Mat AF (2006) Design of 100 nm Single-Electron Transistor (SET) by 2D TCAD simulation, IEEE international conference on Semiconductor Electronics, pp 367–372

    Google Scholar 

  34. Zhou S, Jiang JF, Cai QY (2001) Linear response model of Si single electron transistor, 6th international conference on Solid-State and Integrated-Circuit Technology,vol 2, pp 1411–1414

    Google Scholar 

  35. Krout I, Touati MA, Boubaker A, Sghaier N, Kalboussi A (2011) Drain current model for single electron transistor operating at high temperature, 8th international multi-conference on Systems, Signals and Devices (SSD), pp 1–4

    Google Scholar 

  36. Sang-Hoon Lee, Dae Hwan Kim, Kyung Rok Kim, Jong Duk Lee, Byung-Gook Park, Young-Jin Gu, Gi-Young Yang, Jeong-Taek Kong (2002) A practical SPICE model based on the physics and characteristics of realistic single-electron transistors, IEEE T Nanotechnology, 1(4): 226–232

    Google Scholar 

  37. Zhuang L, Guo L, Chou SY (1998) Room temperature Si single-electron quantum-dot transistor switch. Appl Phys Lett 72(10):1205–1207

    Article  Google Scholar 

  38. Matsumoto K (1996) Room temperature operated single electron transistor made by STM/AFM nano-oxidation process. Physica B: Condens Matter 227(1–4):92–94

    Article  Google Scholar 

  39. Sandhu T (2010) Quantitative assessment of the single-band model in the Si based resonant tunneling devices. Int Semiconduct Conf 2:443–446

    Google Scholar 

  40. Wang JM, Sukhwani B, Padmanabhan U, Ma D, Sinha K (2007) Simulation and design of nanocircuits with resonant tunneling devices. IEEE T Circ Syst I: Regular Papers 54(6):1293–1304

    Article  MATH  Google Scholar 

  41. Mohan S, Mazumder P, Haddad GI (1994) Circuit simulation of resonant tunneling devices using NDR-SPICE, International electron devices meeting, pp 229–232

    Google Scholar 

  42. Ding L, Mazumder P (2004) Noise-tolerant quantum MOS circuits using resonant tunneling devices. IEEE T Nanotechnology 3(1):134–146

    Article  Google Scholar 

  43. Mazumder P, Kulkarni S, Bhattacharya M, Sun JP, Haddad GI (1998) Digital circuit applications of resonant tunneling devices. P IEEE 86(4):664–686

    Article  Google Scholar 

  44. Figielski T, Morawski A, Pelya O, Wosinski T, Makosa A, Tkaczyk Z, Dobrowolski, W, Karczewski G, Kosiel K, Dobrzanski L (2001) Effect of the device size on the performance of resonant-tunneling diodes, International symposium on electron devices for microwave and optoelectronic applications, pp 55–59

    Google Scholar 

  45. Bounouar MA, Calmon F, Beaumont A, Guilmain M, Xuan W, Ecoffey S, Drouin D (2011) Single electron transistor analytical model for hybrid circuit design, IEEE 9th international New Circuits and Systems Conference (NEWCAS), pp 506–509

    Google Scholar 

  46. Mahapatra S, Vaish V, Wasshuber C, Banerjee K, Ionescu AM (2004) Analytical modeling of single electron transistor for hybrid CMOS-SET analog IC design. IEEE T Electron Dev 51(11):1772–1782

    Article  Google Scholar 

  47. Reimann SM, Manninen M (2002) Electronic structure of quantum dots. Rev Mod Phys 74:1283–1342

    Article  Google Scholar 

  48. Shuo Wang, Jianwei Dai, Hasaneen E-S, Lei Wang, Jain F (2008) Programmable threshold voltage using quantum dot transistors for low-power mobile computing, IEEE international symposium on Circuits and Systems, pp 3350–3353

    Google Scholar 

  49. Leobandung E, Lingjie Guo, Yun Wang, Chou SY (1995) Si quantum-dot transistors operating above 100 K device, 53rd annual research conference, pp 48–49

    Google Scholar 

  50. Leobandung E, Lingjie Guo, Chou SY (1995) Si single hole quantum dot transistors for complementary digital circuits, International electron devices meeting, pp 367–370

    Google Scholar 

  51. Crocker M, Xiaobo Sharon H, Niemier M, Yan M, Bernstein G (2008) PLAs in quantum-dot cellular automata. IEEE T Nanotechnology 7(3):376–386

    Article  Google Scholar 

  52. Walus K, Jullien GA (2006) Design tools for an emerging SoC technology. P IEEE 94(6):1225–1244

    Article  Google Scholar 

  53. Walus K, Schulhof G, Jullien GA, Zhang R, Wang W (2004) Circuit design based on majority gates for applications with quantum-dot cellular automata, Conference record of the thirty-eighth asilomar conference on Signals, Systems and Computers, vol 2, pp 1354–1357

    Google Scholar 

  54. Sen B, Anand AS, Adak T, Sikdar BK (2011) Thresholding using quantum-dot cellular automata, International conference on Innovations in Information Technology (IIT), pp 356–360

    Google Scholar 

  55. Bruschi F, Perini F, Rana V, Sciuto D (2011) An efficient quantum-dot cellular automata adder, Design, Automation & Test in Europe conference & Exhibition (DATE), pp 1–4

    Google Scholar 

  56. Modi S, Tomar AS (2010) Logic gate implementations for quantum dot cellular automata, International conference on Computational Intelligence and Communication Networks (CICN), pp 565–567

    Google Scholar 

  57. Weiqiang Liu, Liang Lu, O’Neill M, Swartzlander EE (2011) Design rules for quantum-dot cellular automata, IEEE International Symposium on Circuits and Systems (ISCAS), pp 2361–2364

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chaudhry, A. (2013). Alternate Structures for Nanoelectronic Applications. In: Fundamentals of Nanoscaled Field Effect Transistors. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6822-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6822-6_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6821-9

  • Online ISBN: 978-1-4614-6822-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics