Skip to main content

Dielectrics for Nanoelectronics

  • Chapter
  • First Online:
  • 1696 Accesses

Abstract

This chapter discusses some alternate gate dielectrics apart from the conventional SiO2. Their various properties, fabrication techniques, and their impact on the MOSFET performance have been discussed. A review of low-κ dielectrics for interconnect application at the nanometer scale has also been given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The text/figures/equations/references etc associated with [98] have been republished/reorganized from the paper [98], Amit Chaudhry and Jatindra Nath Roy, “A Quantum Mechanical Model of Gate Oxide Direct Current Density in high-k dielectrics for Nanoscale MOS applications”, Elektrica-Journal of Electrical Engineering, Vol. 13, No. 1, pp.1–6, 2011 with due permission from the publisher.

References

  1. Taur Y (1999) CMOS scaling beyond 0.1um: how far can it go. VLSI-TSA, 6–9

    Google Scholar 

  2. Neaton JB, Muller DA, Ashcroft NW (2000) Electronic properties of the Si/SiO2 interface from first principles. Phys Rev Lett 85(6):1298–1301

    Article  Google Scholar 

  3. Duffy JA (1990) Bonding energy levels and bands in inorganic solids. Wiley, New York

    Google Scholar 

  4. Hubbard KJ, Scholm DG (1996) Thermodynamic stability of binary oxides in contact with silicon. J Mater Res 11:2757–2776

    Article  Google Scholar 

  5. Mahapatra R, kar G, Samantaray C, Dhar A, bhattacharya D, Ray S (2002) ZrO2 as a high-k dielectric for strained SiGe MOS devices. B Mater Sci 25(6):455–457

    Article  Google Scholar 

  6. Campbell SA, Gilmer DC, Wang X, Hsieh MT, Kim HS, Gladfelter WL, Yan JH (1997) MOSFET transistors fabricated with high permittivity TiO2 dielectrics. IEEE T Electron Dev 44:104

    Article  Google Scholar 

  7. Gurvitch M, Manchanda L, Gibson JM (1987) Study of thermally oxidized Yttrium films on silicon. Appl Phys Lett 51:919–921

    Article  Google Scholar 

  8. Shi Y, Ma TP (1999) Electrical properties of high quality ultra thin nitride/oxide stack dielectrics. IEEE T Electron Dev 46:362–368

    Article  Google Scholar 

  9. Yeo YC et al (2002) Direct tunneling leakage current and scalability of alternative gate dielectrics. Appl Phys Lett 81(11):2091–2093

    Article  MathSciNet  Google Scholar 

  10. Chaudhry A, Roy JN (2011) A quantum mechanical model of gate oxide direct current density in high-k dielectrics for nanoscale MOS applications. Elektrica-J Electr Eng 13(1):1–6

    Google Scholar 

  11. Chau R, Datta S, Doczy M, Doyle B, Kavalieros J, Metz M (2004) High-K/Metal-gate stack and its MOSFET characteristics. IEEE Electron Devic Lett 25(6):408–410

    Article  Google Scholar 

  12. Sun S, Plummer J (1980) Electron mobility in inversion and accumulation layers on thermally oxidized silicon surfaces. IEEE T Electron Dev ED-27:1497

    Article  Google Scholar 

  13. Chau R, (2004) Advanced metal gate/High-K dielectric stacks for high-performance CMOS transistors, 5th international conference on the American Vacuum Society Microelectronics and Interfaces (ICMI), USA, Mar 2004, pp 1–3

    Google Scholar 

  14. Wilk GD, Wallace RM, Anthony JM (2001) High-k gate dielectrics: current status and materials properties. Appl Phys Rev 89(10):5243

    Article  Google Scholar 

  15. Lee BH, Kang L, Nieh R, Qi W-J, Lee JC (2000) Thermal stability with rapid thermal annealing. Appl Phys Lett 76:1926

    Article  Google Scholar 

  16. Maexa K, Baklanov M, Shamiryan D, Iacopi F, Brongersma S, Yanovitskaya Z (2003) Low dielectric constant materials for microelectronics. J Appl Phys 93(11):8793–8841

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chaudhry, A. (2013). Dielectrics for Nanoelectronics. In: Fundamentals of Nanoscaled Field Effect Transistors. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6822-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6822-6_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6821-9

  • Online ISBN: 978-1-4614-6822-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics