Skip to main content

Nanoscale Effects: Inversion Layer Quantization

  • Chapter
  • First Online:
Book cover Fundamentals of Nanoscaled Field Effect Transistors
  • 1732 Accesses

Abstract

In this chapter, inversion layer quantization effects on carrier distribution in poly-Si gate, p-type, and n-type substrate are studied. The two approaches viz. triangular well and variation approach for inversion layer quantization are discussed. The capacitance and drain current are also modeled under the inversion layer quantization conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The text/figures/equations/references etc. associated with [77] are republished/reorganized from the paper [77], Amit Chaudhry and J.N. Roy, “A Comparative Study of Hole and Electron Inversion layer Quantization in MOS Structures”, Serbian Journal of Electrical Engineering, Vol. 7, No 2, pp. 185–193, Nov, 2010 with due permission from the publisher.

  2. 2.

    The text/ figures/equations/references etc associated with [79] have been republished/reorganized from the paper [79], Amit Chaudhry and J.N. Roy, “Inversion layer Quantization in Arbitrarily Oriented Substrates: An Analytical Study”, Elektrica-UTM Journal of Electrical Engineering, Vol.12, No 1, pp.1–6, 2010 with due permission from the publisher.

  3. 3.

    The text/figures/equations/references etc. associated with [83] have been republished/reorganized from the paper [83] Amit Chaudhry and Jatindra Nath Roy, “Analytical Modeling of Gate Capacitance of an Ultra Thin Oxide MOS Capacitor: A Quantum Mechanical Study”, Journal of Electron Devices, Vol. 10, pp. 456–463, 2011 with due permission from the publisher.

  4. 4.

    The text/figures/equations/references etc. associated with [86] have been republished/reorganized from the paper [86], Amit Chaudhry and J.N. Roy, “Mathematical Modeling of MOS Capacitance in the presence of Depletion and Energy Quantization in Poly Silicon Gate”, Journal of Semiconductors, Vol.31, No.11, pp. 400-1–400-4, Nov,2010 with due permission from the publisher.

References

  1. Kahng D (1976) A historical perspective on the development of MOS transistors and related devices. IEEE T Electron Dev ED-23:655–660

    Article  Google Scholar 

  2. Snow EH, Grove AS, Deal BE, Sah CT (1965) Ion transport phenomena in insulating films. J Appl Phys 36(5):1664–1674

    Article  Google Scholar 

  3. Pregaldiny F, Lallement C, Grabinski W, Kammerer JB, Mathiot D (2003) An analytical quantum model for the surface potential of deep sub micron MOSFETs, 10th international conference on Mixed Design Integrated Circuits and Systems (MIXDES’03), June 2003

    Google Scholar 

  4. Ip BK, Brews JR (1998) Quantum effects upon drain current in a biased MOSFET. IEEE T Electron Dev 45(10):2213–2221

    Article  Google Scholar 

  5. Stern F, Howard WE (1967) Properties of semiconductor surface inversion layers in the electric quantum limit. Phys Rev 163:816–835

    Article  Google Scholar 

  6. Stern F (1972) Self-consistent results for n-type Si inversion layers. Phys Rev B 5:4891–4899

    Article  Google Scholar 

  7. Moglestue C (1986) Self-consistent calculation of electron and hole inversion charges at Si-Si dioxide interfaces. J Appl Phys 59:3175–3183

    Article  Google Scholar 

  8. Yu Z, Dutton RW, Kiehl RA (2000) Circuit/Device modeling at the quantum level. IEEE T Electron Dev 47(10):1819–1825

    Article  Google Scholar 

  9. Yuhua Cheng, Kai Chen, Kiyotaka Imai, Chenming Hu, (1997) ICM- An analytical inversion charge model for accurate modeling of thin gate oxide MOSFETs, IEEE international conference on Simulation of Semiconductor Processes and Devices – SISPAD, pp 109–112

    Google Scholar 

  10. Ma Y, Liu L, Yu Z, Li Z (2000) Validity and applicability of triangular potential well approximation in modeling of MOS structure inversion and accumulation layer. IEEE T Electron Dev 47(9):1764–1767

    Article  Google Scholar 

  11. Powel J, Crasemann B Quantum mechanics, New Delhi: Oxford and IBH Publishing

    Google Scholar 

  12. Chaudhry A, Roy JN (2012) Analytical modeling of energy quantization effects in nanoscale MOSFETs. Int J Nanoelectronics Mater 5(1):1–9

    Google Scholar 

  13. Hareland S et al (1998) A physically-based model for quantization effects in hole inversion layers. IEEE T Electron Dev 45(1):179–186

    Article  Google Scholar 

  14. Hou T et al (2001) A simple and efficient model for quantization effects of hole inversion layers in MOS devices. IEEE T Electron Dev 48(12):2893–2898

    Article  Google Scholar 

  15. Hou T, Li M (2001) Hole quantization and hole direct tunneling in deep sub micron p-MOSFETs, IEEE, pp 895–900

    Google Scholar 

  16. Hou T, Li M (2001) Hole quantization effects and threshold voltage shift in pMOSFET—assessed by improved one-band effective mass approximation. IEEE T Electron Dev 48(6):1188–1193

    Article  Google Scholar 

  17. Hu C et al (1996) Quantization effects in inversion layers of p channel MOSFET’s on Si (100) substrates. IEEE Electron Devic Lett 17(6):276–278

    Article  Google Scholar 

  18. Takagi S et al (1999) Characterization of inversion-layer capacitance of holes in Si MOSFET’s. IEEE T Electron Dev 46(7):1446–1450

    Article  Google Scholar 

  19. Chaudhry A, Roy JN (2010) A comparative study of hole and electron inversion layer quantization in MOS structures. Serb J Elec Eng 7(2):185–193

    Article  Google Scholar 

  20. Rodriguez N, Gamiz F, Roldan JB (2007) Modeling of inversion layer centroid and polysilicon depletion effects on ultrathin gate oxide MOSFET behavior: the influence of crystalline orientation. IEEE T Electron Dev 54(4):723–732

    Article  Google Scholar 

  21. Chaudhry A, Roy JN (2010) Inversion layer quantization in arbitrarily oriented substrates: an analytical study. Elektrica-UTM J Elec Eng 12(1):1–6

    Google Scholar 

  22. Amit Chaudhry, JN Roy (2010) Impact of quantum inversion charge centroid on the various parameters of a nano-MOSFET, Proceedings of international conference on Microelectronic Devices, Rome, Apr 2010

    Google Scholar 

  23. Yang K, Ya-Chin K, Chenming.H (1999) Quantum effect in oxide thickness determination from capacitance measurement, VLSI Technol, pp 77–78

    Google Scholar 

  24. Pacelli A et al (1999) Carrier quantization at flat bands in MOS devices. IEEE T Electron Dev 46(2):383–387

    Article  Google Scholar 

  25. Chaudhry A, Roy JN (2011) Analytical modeling of gate capacitance of an ultra thin oxide MOS capacitor: a quantum mechanical study. J Electron Dev 10:456–463

    Google Scholar 

  26. Richter CA, Hefner AR, Vogel EM (2001) A comparison of quantum mechanical capacitance–voltage simulators. IEEE T Electron Devic Lett 22(1):35–37

    Article  Google Scholar 

  27. Spinelli AS, Pacelli A, Lacaita AL (2002) Simulation of poly silicon quantization and its effect on n- and p-MOSFET performance. Solid State Electron 46(3):423–428

    Article  Google Scholar 

  28. Chaudhry A, Roy JN (2010) Mathematical modeling of MOS capacitance in the presence of depletion and energy quantization in poly silicon gate. J Semiconduct 31(11):400-1–400-4

    Google Scholar 

  29. Janik T, Majkusaik B (1994) Influence of carrier energy quantization on threshold voltage of metal oxide semiconductor transistor. J Appl Phys 75(10):5186–5190

    Article  Google Scholar 

  30. Garverick S, Sodini C (1987) A simple model for scaled MOS transistors that includes field dependent mobility. IEEE J Solid St Circ SC-22:111–114

    Article  Google Scholar 

  31. Graff H, Klassen F (1990) Compact transistor modeling for circuit design. Springer, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chaudhry, A. (2013). Nanoscale Effects: Inversion Layer Quantization. In: Fundamentals of Nanoscaled Field Effect Transistors. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6822-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6822-6_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6821-9

  • Online ISBN: 978-1-4614-6822-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics