Advertisement

Inflammation, Obesity, Barrett’s Esophagus, and Esophageal Adenocarcinoma

  • Anamay Sharma
  • Ahmed Elebiary
  • Sonia Chowdhury
  • Navtej ButtarEmail author
Chapter
  • 1.5k Downloads
Part of the Energy Balance and Cancer book series (EBAC, volume 7)

Abstract

Esophageal adenocarcinoma arising in metaplastic Barrett’s esophagus is one of the most rapidly increasing cancers in Western countries. Accumulating epidemiological evidence provides support that both chronic reflux injury and being overweight are strongly associated with the risk of esophageal adenocarcinoma. It is proposed that being overweight could contribute to increased predisposition to reflux by mechanically disrupting the physiological mechanisms that prevent reflux injury to the esophagus. Furthermore, mechanistic investigations also provide a link between being overweight to the risk of esophageal adenocarcinoma through increased loco-systemic injury response and metabolic syndrome. Together these observations provide the basis for the hypothesis that being overweight could be a key early trigger for the initiation and an ongoing stimulus for the progression of esophageal adenocarcinoma. In this chapter we will summarize the existing data that supports this hypothesis and discuss ongoing and future investigations to address this hypothesis that links obesity to risk of esophageal adenocarcinoma.

Keywords

Bile Acid Esophageal Cancer Caloric Restriction Esophageal Adenocarcinoma Bile Acid Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Brown LM, Devesa SS (2002) Epidemiologic trends in esophageal and gastric cancer in the United States. Surg Oncol Clin N Am 11(2):235–256PubMedCrossRefGoogle Scholar
  2. 2.
    Pera M et al (2005) Epidemiology of esophageal adenocarcinoma. J Surg Oncol 92(3):151–159PubMedCrossRefGoogle Scholar
  3. 3.
    Beddy P et al (2010) Association of visceral adiposity with oesophageal and junctional adenocarcinomas. Br J Surg 97(7):1028–1034PubMedCrossRefGoogle Scholar
  4. 4.
    Steffen A et al (2009) Anthropometry and esophageal cancer risk in the European prospective investigation into cancer and nutrition. Cancer Epidemiol Biomarkers Prev 18(7):2079–2089PubMedCrossRefGoogle Scholar
  5. 5.
    O’Doherty MG et al (2012) A prospective cohort study of obesity and risk of oesophageal and gastric adenocarcinoma in the NIH-AARP Diet and Health Study. Gut 61(9):1261–1268. doi: 10.1136/gutjnl-2011-300551 PubMedCrossRefGoogle Scholar
  6. 6.
    Otterstatter MC et al (2012) Esophageal cancer in Canada: trends according to morphology and anatomical location. Can J Gastroenterol 26(10):723–727PubMedGoogle Scholar
  7. 7.
    Turati F et al (2012) A meta-analysis of body mass index and esophageal and gastric cardia adenocarcinoma. Ann Oncol 16:16Google Scholar
  8. 8.
    El-Serag HB et al (2005) Abdominal obesity and the risk of Barrett’s esophagus. Am J Gastroenterol 100(10):2151–2156PubMedCrossRefGoogle Scholar
  9. 9.
    Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser 2000;894:i–xii, 1–253Google Scholar
  10. 10.
    Lagergren J (2011) Influence of obesity on the risk of esophageal disorders. Nat Rev Gastroenterol Hepatol 8(6):340–347PubMedCrossRefGoogle Scholar
  11. 11.
    Kendall BJ et al (2013) The risk of Barrett’s esophagus associated with abdominal obesity in males and females. Int J Cancer 132(9):2192–2199PubMedCrossRefGoogle Scholar
  12. 12.
    Nordenstedt H, El-Serag H (2011) The influence of age, sex, and race on the incidence of esophageal cancer in the United States (1992–2006). Scand J Gastroenterol 46(5):597–602PubMedCrossRefGoogle Scholar
  13. 13.
    Kong CY et al (2011) The impact of obesity on the rise in esophageal adenocarcinoma incidence: estimates from a disease simulation model. Cancer Epidemiol Biomarkers Prev 20(11):2450–2456PubMedCrossRefGoogle Scholar
  14. 14.
    Nelsen EM et al (2012) Distribution of body fat and its influence on esophageal inflammation and dysplasia in patients with Barrett’s esophagus. Clin Gastroenterol Hepatol 10(7):728–734; quiz e61–62. doi: 10.1016/j.cgh.2012.03.007
  15. 15.
    Koppman JS et al (2007) Esophageal motility disorders in the morbidly obese population. Surg Endosc 21(5):761–764PubMedCrossRefGoogle Scholar
  16. 16.
    Ortiz V et al (2006) Value of heartburn for diagnosing gastroesophageal reflux disease in severely obese patients. Obesity (Silver Spring) 14(4):696–700CrossRefGoogle Scholar
  17. 17.
    Kuper MA et al (2009) Dysfunction of the lower esophageal sphincter and dysmotility of the tubular esophagus in morbidly obese patients. Obes Surg 19(8):1143–1149PubMedCrossRefGoogle Scholar
  18. 18.
    Ayazi S et al (2009) Obesity and gastroesophageal reflux: quantifying the association between body mass index, esophageal acid exposure, and lower esophageal sphincter status in a large series of patients with reflux symptoms. J Gastrointest Surg 13(8):1440–1447PubMedCrossRefGoogle Scholar
  19. 19.
    Schneider JH et al (2009) Transient lower esophageal sphincter relaxation in morbid obesity. Obes Surg 19(5):595–600PubMedCrossRefGoogle Scholar
  20. 20.
    Pandolfino JE et al (2006) Obesity: a challenge to esophagogastric junction integrity. Gastroenterology 130(3):639–649PubMedCrossRefGoogle Scholar
  21. 21.
    McQuaid KR et al (2011) Systematic review: the role of bile acids in the pathogenesis of gastro-oesophageal reflux disease and related neoplasia. Aliment Pharmacol Ther 34(2):146–165PubMedCrossRefGoogle Scholar
  22. 22.
    Abdel-Latif MM et al (2009) Inflammation and esophageal carcinogenesis. Curr Opin Pharmacol 9(4):396–404PubMedCrossRefGoogle Scholar
  23. 23.
    Tornatore L et al (2012) The nuclear factor kappa B signaling pathway: integrating metabolism with inflammation. Trends Cell Biol 22(11):557–566PubMedCrossRefGoogle Scholar
  24. 24.
    Song S et al (2007) COX-2 induction by unconjugated bile acids involves reactive oxygen species-mediated signalling pathways in Barrett’s oesophagus and oesophageal adenocarcinoma. Gut 56(11):1512–1521PubMedCrossRefGoogle Scholar
  25. 25.
    Buttar NS et al (2002) The effect of selective cyclooxygenase-2 inhibition in Barrett’s esophagus epithelium: an in vitro study. J Natl Cancer Inst 94(6):422–429PubMedCrossRefGoogle Scholar
  26. 26.
    Buttar NS et al (2002) Chemoprevention of esophageal adenocarcinoma by COX-2 inhibitors in an animal model of Barrett’s esophagus. Gastroenterology 122(4):1101–1112PubMedCrossRefGoogle Scholar
  27. 27.
    Falk GW et al (2012) A combination of esomeprazole and aspirin reduces tissue concentrations of prostaglandin E(2) in patients with Barrett’s esophagus. Gastroenterology 143(4):917–926.e1. doi: 10.1053/j.gastro.2012.06.044 PubMedCrossRefGoogle Scholar
  28. 28.
    Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357(9255):539–545PubMedCrossRefGoogle Scholar
  29. 29.
    Groblewska M et al (2012) Interleukin 6 and C-reactive protein in esophageal cancer. Clin Chim Acta 413(19–20):1583–1590PubMedCrossRefGoogle Scholar
  30. 30.
    Ryan AM et al (2011) Obesity, metabolic syndrome and esophageal adenocarcinoma: epidemiology, etiology and new targets. Cancer Epidemiol 35(4):309–319PubMedCrossRefGoogle Scholar
  31. 31.
    Renehan AG, Roberts DL, Dive C (2008) Obesity and cancer: pathophysiological and biological mechanisms. Arch Physiol Biochem 114(1):71–83PubMedCrossRefGoogle Scholar
  32. 32.
    Lysaght J et al (2011) T lymphocyte activation in visceral adipose tissue of patients with oesophageal adenocarcinoma. Br J Surg 98(7):964–974PubMedCrossRefGoogle Scholar
  33. 33.
    Buttar N et al (2008) Infliximab-like anti-TNF alpha antibody down-regulates pro-carcinogenic signaling in Barrett’s mucosa. Gastroenterology 134(4):A129CrossRefGoogle Scholar
  34. 34.
    Tselepis C et al (2002) Tumour necrosis factor-alpha in Barrett’s oesophagus: a potential novel mechanism of action. Oncogene 21(39):6071–6081PubMedCrossRefGoogle Scholar
  35. 35.
    Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259(5091):87–91PubMedCrossRefGoogle Scholar
  36. 36.
    Dvorakova K et al (2004) Increased expression and secretion of interleukin-6 in patients with Barrett’s esophagus. Clin Cancer Res 10(6):2020–2028PubMedCrossRefGoogle Scholar
  37. 37.
    Moons LM et al (2005) Barrett’s oesophagus is characterized by a predominantly humoral inflammatory response. J Pathol 207(3):269–276PubMedCrossRefGoogle Scholar
  38. 38.
    Fitzgerald RC et al (2002) Inflammatory gradient in Barrett’s oesophagus: implications for disease complications. Gut 51(3):316–322PubMedCrossRefGoogle Scholar
  39. 39.
    Lee OJ et al (2005) Hypermethylation and loss of expression of glutathione peroxidase-3 in Barrett’s tumorigenesis. Neoplasia 7(9):854–861PubMedCrossRefGoogle Scholar
  40. 40.
    Damms-Machado A, Weser G, Bischoff SC (2012) Micronutrient deficiency in obese subjects undergoing low calorie diet. Nutr J 11:34. doi: 10.1186/1475-2891-11-34 PubMedCrossRefGoogle Scholar
  41. 41.
    Fountoulakis A et al (2004) Plasma and esophageal mucosal levels of vitamin C: role in the pathogenesis and neoplastic progression of Barrett’s esophagus. Dig Dis Sci 49(6):914–919PubMedCrossRefGoogle Scholar
  42. 42.
    Despres JP, Lemieux I (2006) Abdominal obesity and metabolic syndrome. Nature 444(7121):881–887PubMedCrossRefGoogle Scholar
  43. 43.
    Fasshauer M, Paschke R (2003) Regulation of adipocytokines and insulin resistance. Diabetologia 46(12):1594–1603PubMedCrossRefGoogle Scholar
  44. 44.
    Doyle SL et al (2012) IGF-1 and its receptor in esophageal cancer: association with adenocarcinoma and visceral obesity. Am J Gastroenterol 107(2):196–204PubMedCrossRefGoogle Scholar
  45. 45.
    Iravani S et al (2003) Modification of insulin-like growth factor 1 receptor, c-Src, and Bcl-XL protein expression during the progression of Barrett’s neoplasia. Hum Pathol 34(10):975–982PubMedCrossRefGoogle Scholar
  46. 46.
    Imsumran A et al (2007) Insulin-like growth factor-I receptor as a marker for prognosis and a therapeutic target in human esophageal squamous cell carcinoma. Carcinogenesis 28(5):947–956PubMedCrossRefGoogle Scholar
  47. 47.
    Wu Y et al (2010) Insulin-like growth factor-I regulates the liver microenvironment in obese mice and promotes liver metastasis. Cancer Res 70(1):57–67PubMedCrossRefGoogle Scholar
  48. 48.
    Ben Ounis O et al (2010) Effect of individualized exercise training combined with diet restriction on inflammatory markers and IGF-1/IGFBP-3 in obese children. Ann Nutr Metab 56(4):260–266PubMedCrossRefGoogle Scholar
  49. 49.
    Rubenstein JH et al (2008) A pilot study of the association of low plasma adiponectin and Barrett’s esophagus. Am J Gastroenterol 103(6):1358–1364PubMedCrossRefGoogle Scholar
  50. 50.
    Thompson OM et al (2010) Serum leptin and adiponectin levels and risk of Barrett’s esophagus and intestinal metaplasia of the gastroesophageal junction. Obesity (Silver Spring) 18(11):2204–2211CrossRefGoogle Scholar
  51. 51.
    Somasundar P et al (2003) Leptin stimulates esophageal adenocarcinoma growth by nonapoptotic mechanisms. Am J Surg 186(5):575–578PubMedCrossRefGoogle Scholar
  52. 52.
    Halaas JL et al (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269(5223):543–546PubMedCrossRefGoogle Scholar
  53. 53.
    Ogunwobi O, Mutungi G, Beales IL (2006) Leptin stimulates proliferation and inhibits apoptosis in Barrett’s esophageal adenocarcinoma cells by cyclooxygenase-2-dependent, prostaglandin-E2-mediated transactivation of the epidermal growth factor receptor and c-Jun NH2-terminal kinase activation. Endocrinology 147(9):4505–4516PubMedCrossRefGoogle Scholar
  54. 54.
    Zhang Y et al (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372(6505):425–432PubMedCrossRefGoogle Scholar
  55. 55.
    Rigamonti AE et al (2010) Changes in plasma levels of ghrelin, leptin, and other hormonal and metabolic parameters following standardized breakfast, lunch, and physical exercise before and after a multidisciplinary weight-reduction intervention in obese adolescents. J Endocrinol Invest 33(9):633–639PubMedGoogle Scholar
  56. 56.
    Spruijt-Metz D et al (2009) A high-sugar/low-fiber meal compared with a low-sugar/high-fiber meal leads to higher leptin and physical activity levels in overweight Latina females. J Am Diet Assoc 109(6):1058–1063PubMedCrossRefGoogle Scholar
  57. 57.
    Siklova-Vitkova M et al (2012) Adipose tissue secretion and expression of adipocyte-produced and stromavascular fraction-produced adipokines vary during multiple phases of weight-reducing dietary intervention in obese women. J Clin Endocrinol Metab 97(7):E1176–E1181PubMedCrossRefGoogle Scholar
  58. 58.
    Morel O et al (2011) Short-term very low-calorie diet in obese females improves the haemostatic balance through the reduction of leptin levels, PAI-1 concentrations and a diminished release of platelet and leukocyte-derived microparticles. Int J Obes (Lond) 35(12):1479–1486CrossRefGoogle Scholar
  59. 59.
    Ramel A et al (2009) Effects of seafood consumption and weight loss on fasting leptin and ghrelin concentrations in overweight and obese European young adults. Eur J Nutr 48(2):107–114PubMedCrossRefGoogle Scholar
  60. 60.
    Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395(6704):763–770PubMedCrossRefGoogle Scholar
  61. 61.
    Beales IL, Ogunwobi OO (2007) Leptin synergistically enhances the anti-apoptotic and growth-promoting effects of acid in OE33 oesophageal adenocarcinoma cells in culture. Mol Cell Endocrinol 274(1–2):60–68PubMedCrossRefGoogle Scholar
  62. 62.
    Tiaka EK et al (2011) The implication of adiponectin and resistin in gastrointestinal diseases. Cytokine Growth Factor Rev 22(2):109–119PubMedCrossRefGoogle Scholar
  63. 63.
    Linkov F et al (2012) Longitudinal evaluation of cancer-associated biomarkers before and after weight loss in RENEW study participants: implications for cancer risk reduction. Gynecol Oncol 125(1):114–119PubMedCrossRefGoogle Scholar
  64. 64.
    Ackermann D et al (2011) Waist circumference is positively correlated with markers of inflammation and negatively with adiponectin in women with metabolic syndrome. Nutr Res 31(3):197–204PubMedCrossRefGoogle Scholar
  65. 65.
    Gueugnon C et al (2012) Effects of an in-patient treatment program based on regular exercise and a balanced diet on high molecular weight adiponectin, resistin levels, and insulin resistance in adolescents with severe obesity. Appl Physiol Nutr Metab 37(4):672–679PubMedCrossRefGoogle Scholar
  66. 66.
    Lang HF et al (2011) Weight loss increased serum adiponectin but decreased lipid levels in obese subjects whose body mass index was lower than 30 kg/m(2). Nutr Res 31(5):378–386PubMedCrossRefGoogle Scholar
  67. 67.
    Gammelmark A et al (2012) Low-dose fish oil supplementation increases serum adiponectin without affecting inflammatory markers in overweight subjects. Nutr Res 32(1):15–23PubMedCrossRefGoogle Scholar
  68. 68.
    Bruun JM et al (2003) Regulation of adiponectin by adipose tissue-derived cytokines: in vivo and in vitro investigations in humans. Am J Physiol Endocrinol Metab 285(3):E527–E533PubMedGoogle Scholar
  69. 69.
    Konturek PC et al (2008) Effect of adiponectin and ghrelin on apoptosis of Barrett a­denocarcinoma cell line. Dig Dis Sci 53(3):597–605PubMedCrossRefGoogle Scholar
  70. 70.
    Dieudonne MN et al (2006) Adiponectin mediates antiproliferative and apoptotic responses in human MCF7 breast cancer cells. Biochem Biophys Res Commun 345(1):271–279PubMedCrossRefGoogle Scholar
  71. 71.
    Zhao X et al (2007) Correlation between expression of leptin and clinicopathological features and prognosis in patients with gastric cancer. J Gastroenterol Hepatol 22(8):1317–1321PubMedCrossRefGoogle Scholar
  72. 72.
    Howard JM et al (2010) Associations between leptin and adiponectin receptor upregulation, visceral obesity and tumour stage in oesophageal and junctional adenocarcinoma. Br J Surg 97(7):1020–1027PubMedCrossRefGoogle Scholar
  73. 73.
    Fang Y et al (2004) Bile acids induce mitochondrial ROS, which promote activation of receptor tyrosine kinases and signaling pathways in rat hepatocytes. Hepatology 40(4):961–971PubMedGoogle Scholar
  74. 74.
    Imayama I et al (2012) Effects of a caloric restriction weight loss diet and exercise on inflammatory biomarkers in overweight/obese postmenopausal women: a randomized controlled trial. Cancer Res 72(9):2314–2326PubMedCrossRefGoogle Scholar
  75. 75.
    Cintra W et al (2012) C-reactive protein decrease after postbariatric abdominoplasty. Inflammation 35(1):316–320PubMedCrossRefGoogle Scholar
  76. 76.
    Pakiz B et al (2011) Effects of a weight loss intervention on body mass, fitness, and inflammatory biomarkers in overweight or obese breast cancer survivors. Int J Behav Med 18(4):333–341PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Anamay Sharma
    • 1
  • Ahmed Elebiary
    • 1
  • Sonia Chowdhury
    • 1
  • Navtej Buttar
    • 1
    Email author
  1. 1.Mayo ClinicRochesterUSA

Personalised recommendations