Advertisement

Dietary Fats as Mediators of Obesity, Inflammation, and Colon Cancer

  • Stephanie K. Doerner
  • Nathan A. BergerEmail author
Chapter
Part of the Energy Balance and Cancer book series (EBAC, volume 7)

Abstract

Obesity and associated low-grade inflammation are clearly risk factors for development of diabetes, cardiovascular disease, and cancer; however, the mechanisms and pathways by which obesity and inflammation lead to these disorders are not clearly defined. Since obesity is largely determined by levels of energy expenditure as well as quantities and composition of consumed nutrients, especially fats and carbohydrates, the question exists as to whether obesity and/or dietary components contribute directly to development of inflammation and/or associated comorbidities including diabetes, cancer, and cardiovascular disease. In this chapter, we examine the evidence supporting a role for dietary fats in the development of inflammation and intestinal tumorigenesis. We also compare different fats and different diets for their ability to promote or prevent intestinal tumorigenesis and explore possible mechanisms of action. These considerations are important for the potential prevention and control of intestinal cancer, since overall diet and specific dietary components are modifiable risk factors and increasing numbers of dietary and pharmacologic interventions are becoming available to control both inflammatory and carcinogenic processes.

Keywords

Colon Cancer Stearic Acid Conjugate Linoleic Acid Human Colon Cancer Cell Line Colon Cancer Risk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Campoy C, Escolano-Margarit MV, Anjos T, Szajewska H, Uauy R (2012) Omega 3 fatty acids on child growth, visual acuity and neurodevelopment. Br J Nutr 107(suppl 2):S85–S106PubMedGoogle Scholar
  2. 2.
    Huffman SL, Harika RK, Eilander A, Osendarp SJ (2011) Essential fats: how do they affect growth and development of infants and young children in developing countries? A literature review. Matern Child Nutr 3:44–65Google Scholar
  3. 3.
    Calle EE, Kaaks R (2004) Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4:579–591PubMedGoogle Scholar
  4. 4.
    Nock N, Berger NA (2010) Obesity and cancer, overview of mechanisms. In: Berger NA (ed) Energy balance and cancer. Springer, New York, pp 129–179Google Scholar
  5. 5.
    Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM (1995) Increased adipose expression of tumor necrosis factor in human obesity and insulin resistance. J Clin Invest 95:2409–2415PubMedGoogle Scholar
  6. 6.
    Doll R, Peto R (1981) The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst 66:1191–1308PubMedGoogle Scholar
  7. 7.
    Giovannucci E, Rimm EB, Colditz GA, Stampfer MJ, Ascherio A, Chute CC, Willet WC (1993) A prospective study of dietary fat and risk of prostate cancer. J Natl Cancer Inst 85(19):1571–1579PubMedGoogle Scholar
  8. 8.
    Kolonel LN (1987) Fat and colon cancer: how firm is the epidemiologic evidence? Am J Clin Nutr 45:336–341PubMedGoogle Scholar
  9. 9.
    Kushi L, Giovannucci E (2002) Dietary fat and cancer. Am J Med 113(9B):63S–70SPubMedGoogle Scholar
  10. 10.
    Reddy BS (1986) Effect of dietary fish oil on azoxymethane-induced colon carcinogenesis in male F334 rats. Cancer Res 46:3367–3370PubMedGoogle Scholar
  11. 11.
    Reddy BS (1986) Amount and type of dietary fat and colon cancer: animal model studies. In: Ip C, Birt DF, Rogers AE, Mettlin C (eds) Dietary fat and cancer. Alan R. Liss, New York, pp 295–309Google Scholar
  12. 12.
    Rose DP, Boyar AP, Wynder EL (1986) International comparisons of mortality rates for cancer of the breast, ovary, prostate, and colon, and per capita food consumption. Cancer 58(11):2363–2371PubMedGoogle Scholar
  13. 13.
    Thiebaut ACM, Jiao L, Silverman DT, Cross AJ, Thompson FE, Subar AF, Hollenbeck AR, Schatzkin A, Ztolzenberg-Solomon RZ (2009) Dietary fatty acids and pancreatic cancer in NIH-AARP diet and health study. J Natl Cancer Inst 101:1001–1011PubMedGoogle Scholar
  14. 14.
    Willet WC, Stampfer MJ, Colditz GA, Rosner BA, Speizer FE (1990) Relation of meat, fat, and fiber intake to the risk of colon cancer in a prospective study among women. N Engl J Med 323(24):1664–1672Google Scholar
  15. 15.
    Wynder EL, Cohen LA, Muscat JE, Winters B, Dwyer JT, Blackburn G (1997) Breast cancer: weighing the evidence for a promoting role of dietary fat. J Natl Cancer Inst 89:766–775PubMedGoogle Scholar
  16. 16.
    Rose DP (1997) Dietary fatty acids and cancer. Am J Clin Nutr 66(suppl):998S–1003SPubMedGoogle Scholar
  17. 17.
    Willet WC, Stampfer MJ, Colditz GA, Rosner BA, Hennekens CH, Speizer FE (1987) Dietary fat and the risk of breast cancer. N Engl J Med 316(1):22–28Google Scholar
  18. 18.
    Chlebowski RT, Blackburn GL, Thomson CA, Nixon DW, Shapiro A, Hoy MK, Goodman MT, Giuliano AE, Karanja N, McAndrew P, Hudis C, Butler J, Merkel D, Kristal A, Caan B, Michaelson R, Vinciguerra V, Del Prete S, Winkler M, Hall R, Simon M, Winters BL, Elashoff RM (2006) Dietary fat reduction and breast cancer outcome: interim efficacy results from the Women’s Intervention Study. J Natl Cancer Inst 98(24):1767–1776PubMedGoogle Scholar
  19. 19.
    Prentice RL, Thomson CA, Caan B, Hubbell FA, Anderson GL, Beresford SA, Pettinger M, Lane DS, Lessin L, Yasmeen S, Singh B, Khandekar J, Shikany JM, Satterfield S, Chlebowski RT (2007) Low-fat dietary pattern and cancer incidence in the Women’s Health Initiative Dietary Modification Randomized Controlled Trial. J Natl Cancer Inst 99(20):1534–1543PubMedGoogle Scholar
  20. 20.
    Voet D, Voet JG, Pratt CW (2006) Fundamentals of biochemistry: life at the molecular level, 2nd edn. Chapter 9, Lipids and biological membranes. Wiley, Hoboken, pp 233–281Google Scholar
  21. 21.
    Li B, Birdwell C, Whelan J (1994) Antithetic relationship of dietary arachidonic acid and eicosapentaenoic acid on eicosanoid production in vivo. J Lipid Res 35:1869–1877PubMedGoogle Scholar
  22. 22.
    Szachowicz-Petelska B, Sulkowski S, Figaszewski ZA (2007) Altered membrane free unsaturated fatty acid composition in human colorectal cancer tissue. Mol Cell Biochem 294:237–242PubMedGoogle Scholar
  23. 23.
    Petrik MB, McEntee MF, Chiu CH, Whelan J (2000) Antagonism of arachidonic acid is linked to the antitumorigenic effect of dietary eicosapentaenoic acid in Apc(Min/+) mice. J Nutr 130(5):1153–1158PubMedGoogle Scholar
  24. 24.
    Cunnane SC (2003) Problems with essential fatty acids: time for a new paradigm? Prog Lipid Res 42:544–568PubMedGoogle Scholar
  25. 25.
    Armstrong B, Doll R (1975) Environmental factors and cancer incidence and mortality in different countries, with special reference to dietary practices. Int J Cancer 15(4):617–631PubMedGoogle Scholar
  26. 26.
    Burkitt DP (1978) Colonic-rectal cancer: fiber and other dietary factors. Am J Clin Nutr 31:S58–S64PubMedGoogle Scholar
  27. 27.
    Wynder EL, Kajitani T, Ishikawa S, Dodo H, Takano A (1969) Environmental factors of cancer of the colon and rectum II. Japanese epidemiological data. Cancer 23(5):1210–1220PubMedGoogle Scholar
  28. 28.
    Carrera-Bastos P, Fontes-Villalba M, O’Keefe JH et al (2011) The western diet and lifestyle and diseases of civilization. Res Rep Clin Cardiol 2011(2):15–35Google Scholar
  29. 29.
    Eaton B, Konner M (1985) Paleolithic nutrition—a consideration of its nature and current implications. N Engl J Med 312:283–289PubMedGoogle Scholar
  30. 30.
    Hu FB, Rimm EB, Stampfer MJ, Ascherio A, Speigelman D, Willet WC (2000) Prospective study of major dietary patterns and risk of coronary heart disease in men. Am J Clin Nutr 72:912–921PubMedGoogle Scholar
  31. 31.
    Giovannucci E (2002) Modifiable risk factors for colon cancer. Gastroenterol Clin North Am 31(4):925–943PubMedGoogle Scholar
  32. 32.
    Slattery ML, Boucher KM, Caan BJ, Potter JD, Ma KN (1998) Eating patterns and risk of colon cancer. Am J Epidemiol 148(1):4–16PubMedGoogle Scholar
  33. 33.
    Marmot M (2007) Food nutrition, physical activity, and the prevention of cancer: a global perspective. World Cancer Research Fund/American Institute for Cancer Research, Washington, DC, pp 4–29Google Scholar
  34. 34.
    Flood DM, Weiss NS, Cook LS, Emerson JC, Schwartz SM, Potter JD (2000) Colorectal cancer incidence in Asian migrants to the United States and their descendants. Cancer Causes Control 11:403–411PubMedGoogle Scholar
  35. 35.
    Potter JD, Slattery ML, Bostick RM, Gapstur SM (1993) Colon cancer: a review of the epidemiology. Epidemiol Rev 15:499–545PubMedGoogle Scholar
  36. 36.
    Shimizu H, Mack TM, Ross RK, Henderson BE (1987) Cancer of the gastrointestinal tract among Japanese and white immigrants in Los Angeles Country. J Natl Cancer Inst 78:223–228PubMedGoogle Scholar
  37. 37.
    Buell P, Dunn JE Jr (1965) Cancer mortality among Japanese Issei and Nissei of California. Cancer 18:656–664PubMedGoogle Scholar
  38. 38.
    Ho GY, Figueroa-Vallés NR, De La Tore-Feliciano T, Tucker KL, Tortolero-Luna G, Rivera WT, Jiménez-Velázquez IZ, Ortiz-Martinez AP, Rohan TE (2009) Cancer disparities between mainland and island Puerto Ricans. Rev Panam Salud Publica 25(5):394–400PubMedGoogle Scholar
  39. 39.
    Lee J, Demissie K, Lu S-E, Ghoads GG (2007) Cancer incidence among Korean-American immigrants in the United States and Native Koreans in South Korea. Cancer Control 14(1):78–85PubMedGoogle Scholar
  40. 40.
    Pinheiro PS, Sherman RL, Trapido EJ, Fleming LE, Huang Y, Gomez-Marin O, Lee D (2009) Cancer incidence in first generation U.S. Hispanics: Cubans, Mexicans, Puerto Ricans, and new Latinos. Cancer Epidemiol Biomarkers Prev 18(8):2162–2169PubMedGoogle Scholar
  41. 41.
    Lillioja S, Bogardus C (1988) Obesity and insulin resistance: lessons learned from the Pima Indians. Diabetes Metab 4:517–540Google Scholar
  42. 42.
    Ravussin E (1993) Energy metabolism in obesity studies in the Pima Indians. Diabetes Care 16:232–238PubMedGoogle Scholar
  43. 43.
    Baier LJ, Hanson RL (2004) Genetic studies of the etiology of type 2 diabetes in Pima Indians: hunting for pieces to a complicated puzzle. Diabetes 53:1181–1186PubMedGoogle Scholar
  44. 44.
    Ferlay J, Bray F, Pisani P et al (2004) GLOBOCAN 2002: cancer incidence, mortality and prevalence worldwide. IARC Press, LyonGoogle Scholar
  45. 45.
    Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108PubMedGoogle Scholar
  46. 46.
    Stoneham M, Goldacre M, Seagroatt V, Gill L (2000) Olive oil, diet and colorectal cancer: an ecological study and a hypothesis. J Epidemiol Community Health 54:756–760PubMedGoogle Scholar
  47. 47.
    Trichopoulou A, Lagiou P, Kuper H, Trichopoulos D (2000) Cancer and Mediterranean dietary traditions. Cancer Epidemiol Biomarkers Prev 9:869–873PubMedGoogle Scholar
  48. 48.
    Rogers AE, Nauss KM (1985) Rodent models for carcinoma of the colon. Dig Dis Sci 30(12):87S–102SPubMedGoogle Scholar
  49. 49.
    Cho KR, Vogelstein B (1992) Suppressor gene alterations in the colorectal adenoma-carcinoma sequence. J Cell Biochem Suppl 16G:137–141PubMedGoogle Scholar
  50. 50.
    Cottrell S, Bicknell D, Kaklamanis L, Bodmer WF (1992) Molecular analysis of APC mutations in familial adenomatous polyposis and sporadic colon carcinomas. Lancet 340(8820):626–630PubMedGoogle Scholar
  51. 51.
    Reddy BS, Narisawa T, Vukusich D, Weisburger JH, Wynder EL (1976) Effect of quality and quantity of dietary fat and dimethylhydrazine in colon carcinogenesis in rats. Proc Soc Exp Biol Med 151(2):237–239PubMedGoogle Scholar
  52. 52.
    Reddy BS, Weisburger JH, Narisawa T, Wynder EL (1974) Colon carcinogenesis in germ-free rats with 1, 2-dimethylhydrazine and N-methyl-N′-nitro-N-nitrosoguanidine. Cancer Res 34:2368–2372PubMedGoogle Scholar
  53. 53.
    Neaptolemos JP, Clayton H, Heagerty AM, Nicholson MJ, Johnson B, Mason J, Manson K, James RF, Bell PR (1988) Dietary fat in relation to fatty acid composition of red cells and adipose tissue in colorectal cancer. Br J Cancer 58:575–579Google Scholar
  54. 54.
    Slattery ML, Potter JD, Duncan DM, Berry TD (1997) Dietary fats and colon cancer: assessment of risk associated with specific fatty acids. Int J Cancer 73(5):670–677PubMedGoogle Scholar
  55. 55.
    Lee JY, Sohn KH, Rhee SH, Hwang D (2011) Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J Biol Chem 276:16683–16689Google Scholar
  56. 56.
    Backlund MG, Mann JR, DuBois RN (2005) Mechanisms for the prevention of gastrointestinal cancer: the role of prostaglandin E2. Oncology 69(suppl 1):28–32PubMedGoogle Scholar
  57. 57.
    Backlund MG, Mann JR, Holla VR, Buchanan FG, Tai HH, Musiek ES, Milne GL, Katkuri S, DuBois RN (2005) 15 Hydroxyprostaglandin dehydrogenase is down-regulated in colorectal cancer. J Biol Chem 280(5):3217–3223PubMedGoogle Scholar
  58. 58.
    Markowitz SD, Bertagnolli MM (2009) Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med 361(25):2449–2460PubMedGoogle Scholar
  59. 59.
    May V, Colbert LH, Berrigan D, Perkins SN, Pfeiffer R, Lavigne JA, Lanza E, Haines DC, Schatzkin A, Hursting SD (2003) Calorie restriction and diet composition modulate spontaneous intestinal tumorigenesis in Apc(min) mice through different mechanisms. Cancer Res 63:1752–1755Google Scholar
  60. 60.
    Markowitz SD (2007) Aspirin and colon cancer—targeting prevention? N Engl J Med 356(21):2195–2198PubMedGoogle Scholar
  61. 61.
    Yan M, Myung SJ, Fink SP, Lawrence E, Lutterbaugh J, Yang P, Zhou X, Liu D, Rerko RM, Willis J, Dawson D, Tai HH, Barnholtz-Sloan JS, Newman RA, Bertagnolli MM, Markowitz SD (2009) 15-Hydroxyprostaglandin dehydrogenase inactivation as a mechanism of ­resistance to celecoxib chemoprevention of colon tumors. Proc Natl Acad Sci U S A 106(23):9409–9413PubMedGoogle Scholar
  62. 62.
    Bertagnolli MM (2012) Cyclooxygenase-2 and chronic inflammation: drivers of colorectal tumorigenesis. In: Markowitz SD, Berger NA (eds) Energy balance and gastrointestinal cancer. Energy balance and cancer, vol 4. Springer, New York, pp 157–182Google Scholar
  63. 63.
    Sharma RA, Gescher A, Plastaras JP, Leuratti C, Singh R, Gallacher-Horley B, Offord E, Marnett LJ, Steward WP, Plummer SM (2001) Cyclooxygenase-2, malondialdehyde and pyrimidopurinone adducts of deoxyguanosine in human colon cells. Carcinogenesis 22:1557–1560PubMedGoogle Scholar
  64. 64.
    Wilson AJ, Byron K, Gibson PR (1999) Interleukin-8 stimulates the migration of human colonic epithelial cells in vitro. Clin Sci (Lond) 97:385–390Google Scholar
  65. 65.
    Zhao L, Kwon MJ, Huang S, Lee JY, Fukase K, Inohara N, Hwang DH (2007) Differential modulation of Nods signaling pathways by fatty acids in human colonic epithelial HCT116 cells. J Biol Chem 282:11618–11628PubMedGoogle Scholar
  66. 66.
    Hwang D (2001) Modulation of the expression of cyclooxygenase-2 by fatty acids mediated through Toll-like receptor 4-derived signaling pathways. FASEB J 15(14):2556–2564PubMedGoogle Scholar
  67. 67.
    Baró L, Hermoso JC, Núñez MC, Jiménez-Rios JA, Gil A (1998) Abnormalities in plasma and red blood cell fatty acid profiles of patients with colorectal cancer. Br J Cancer 77:1978–1983PubMedGoogle Scholar
  68. 68.
    Hietanen E, Bartsch H, Bereziat JC, Camus AM, McClinton S, Eremin O, Davidson L, Boyle P (1994) Diet and oxidative stress in breast, colon and prostate cancer patients: a case-control study. Eur J Clin Nutr 48:575–586PubMedGoogle Scholar
  69. 69.
    Theodoratou E, McNeill G, Cetnarskyj R, Farrington SM, Tenesa A, Barnetson R, Porteous M, Dunlop M, Campbell H (2007) Dietary fatty acids and colorectal cancer: a case-control study. Am J Epidemiol 166(2):181–195PubMedGoogle Scholar
  70. 70.
    Kuriki K, Mutoh M, Tajima K, Wakabayashi K, Tatematsu M (2008) Relationship between intestinal polyp formation and fatty acid levels in plasma, erythrocytes, and intestinal polyps in Min mice. Cancer Sci 99:2410–2416PubMedGoogle Scholar
  71. 71.
    Neaptolemos JP, Husband D, Imray C, Rowley S, Lawson N (1991) Arachidonic acid and docosahexaenoic acid are increased in human colorectal cancer. Gut 32:278–281Google Scholar
  72. 72.
    Awad AB, Hermann T, Fink CS, Horwath PJ (1995) 18:1 n7 fatty acids inhibit growth and decrease inositol phosphate release in HT-29 cells compared to n9 fatty acids. Cancer Lett 91:55–61PubMedGoogle Scholar
  73. 73.
    Habib NA, Hershman MJ, Salem R, Barker W, Apostolov K, Wood CB (1987) Increased erythrocyte stearic acid desaturation in rats with chemically induced colorectal carcinomas. Int J Colorectal Dis 2:12–14PubMedGoogle Scholar
  74. 74.
    Schlager SI, Ohanian SH, Borsos T (1997) Correlation between the ability of tumor cells to incorporate specific fatty acids and their sensitivity to killing by a specific antibody plus guinea pig complement. S Afr Med J 87:152–158Google Scholar
  75. 75.
    Baer DJ, Judd JT, Clevidence BA, Tracy RP (2004) Dietary fatty acids affect plasma markers if inflammation in healthy men fed controlled diets: a randomized crossover study. Am J Clin Nutr 79:969–973PubMedGoogle Scholar
  76. 76.
    King ED, Egan BM, Geesey ME (2003) Relation of dietary fat and fiber to elevation of C-reactive protein. Am J Cardiol 92(11):1335–1339PubMedGoogle Scholar
  77. 77.
    Nestel P, Clifton P, Noakes M (1994) Effects of increasing dietary palmitoleic acid compared with palmitic and oleic acids on plasma lipids of hypercholesterolemic men. J Lipid Res 35(4):656–662PubMedGoogle Scholar
  78. 78.
    Yang ZH, Miyahara H, Hatanaka A (2011) Chronic administration of palmitoleic acid reduces insulin resistance and hepatic lipid accumulation in KK-Ay mice with genetic type 2 diabetes. Lipids Health Dis 10(120):1–8Google Scholar
  79. 79.
    Mosconi C, Agradi E, Gambetta A, Bozzetti F, Galli C (1989) Decrease of polyunsaturated fatty acids and elevation of the oleic/stearic acid ratio in plasma and red blood cell lipids of malnourished cancer patients. JPEN J Parenter Enteral Nutr 13:501–504PubMedGoogle Scholar
  80. 80.
    Takeshita M, Ueda H, Shirabe K, Higuchi Y, Yoshida S (1997) Lack of promotion of colon cancinogenesis by high-oleic safflower oil. Cancer 79:1487–1493PubMedGoogle Scholar
  81. 81.
    Harvey KA, Walker CL, Xu Z, Whitley P, Pavlina TM, Hise M, Zaloga GP, Siddiqui RA (2010) Oleic acid inhibits stearic acid-induced inhibition of cell growth and pro-inflammatory responses in human aortic endothelial cells. J Lipid Res 51(12):3470–3480PubMedGoogle Scholar
  82. 82.
    Llor X, Pons E, Roca A, Alvarez M, Mañé J, Fernández-Bañares F, Gassull MA (2003) The effects of fish oil, olive oil, oleic acid and linoleic acid on colorectal neoplastic processes. Clin Nutr 22:71–79PubMedGoogle Scholar
  83. 83.
    Carrillo C, Cavia Mdel M, Alonso-Torre SR (2012) Oleic acid inhibits store-operated calcium entry in human colorectal adenocarcinoma cells. Eur J Nutr 51(6):677–684PubMedGoogle Scholar
  84. 84.
    de la Puerta R, Marquez-Martin A, Fernandez-Arche A, Ruiz-Gutierrez V (2009) Influence of dietary fat on oxidative stress and inflammation in murine macrophages. Nutrition 25(5):548–554PubMedGoogle Scholar
  85. 85.
    Hendrickse CW, Kelly RW, Radley S, Donovan IA, Keighley MR, Neoptolemos JP (1994) Lipid peroxidation and prostaglandins in colorectal cancer. Br J Surg 81(8):1219–1223PubMedGoogle Scholar
  86. 86.
    Dupont J, White PJ, Carpenter MP, Schaefer EJ, Meydani SN, Elson CE, Woods M, Gorback SL (1990) Food uses and health effects of corn oil. J Am Coll Nutr 9:438–470PubMedGoogle Scholar
  87. 87.
    Kant AK (2000) Consumption of energy-dense, nutrient-poor foods by adult Americans: nutritional and health implications. The third National Health and Nutrition Examination Survey, 1988–1994. Am J Clin Nutr 72:929–936PubMedGoogle Scholar
  88. 88.
    Reddy BS, Maeura Y (1984) Tumor promotion by dietary fat in azoxymethane-induced colon carcinogenesis in female F344 rats: influence of amount and source of dietary fat. J Natl Cancer Inst 72:745–750PubMedGoogle Scholar
  89. 89.
    Reddy BS, Sugie S (1988) Effect of different levels of omega-3 and omega-6 fatty acids on azoxymethane-induced colon carcinogenesis in F344 rats. Cancer Res 48:6642–6647PubMedGoogle Scholar
  90. 90.
    Singh J, Hamid R, Reddy BS (1997) Dietary fat and colon cancer: modulation of cyclooxygenase-2 by types and amount of dietary fat during the postinitiation stage of colon carcinogenesis. Cancer Res 57:3465–3470PubMedGoogle Scholar
  91. 91.
    Fernández-Bañares F, Esteve M, Navarro E, Cabré E, Boix J, Abad-Lacruz A, Klaassen J, Planas R, Humbert P, Pastor C, Gassull MA (1996) Changes of the mucosal n3 and n6 fatty acid status occur early in the colorectal adenoma-carcinoma sequence. Gut 38:254–259PubMedGoogle Scholar
  92. 92.
    Tuyns AJ, Haelterman M, Kaaks R (1987) Colorectal cancer and the intake of nutrients: ­oligosaccharides are a risk factor, fats are not. A case-control study in Belgium. Nutr Cancer 10:181–196PubMedGoogle Scholar
  93. 93.
    Kelley NS, Hubbard NE, Erickson KL (2007) Conjugated linoleic acid isomers and cancer. J Nutr 137:2599–2607PubMedGoogle Scholar
  94. 94.
    Sakaguchi M, Hiramatsu Y, Takada H, Yamamura M, Hioki K, Saito K, Yamamoto M (1984) Effect of dietary unsaturated and saturated fats on azoxymethane-induced colon carcinogenesis in rats. Cancer Res 44:1472–1477PubMedGoogle Scholar
  95. 95.
    Ohmori H, Lu Y, Fujii K, Sasahira T, Shimomoto T, Denda A, Kuniyasu H (2010) Dietary linoleic acid and glucose enhances azoxymethane-induced colon cancer and metastases via the expression of high-mobility group box 1. Pathobiology 77(4):210–217PubMedGoogle Scholar
  96. 96.
    Johnson GH, Fritsche K (2012) Effect of dietary linoleic acid on markers of inflammation in healthy persons: a systematic review of randomized controlled trials. J Acad Nutr Diet 112(7):1029–1041PubMedGoogle Scholar
  97. 97.
    Zock PL, Katan MB (1998) Linoleic acid intake and cancer risk: a review and meta-analysis. Am J Clin Nutr 68(1):142–153PubMedGoogle Scholar
  98. 98.
    Almendingen K, Høstmark AT, Fausa O, Mosdøl A, Aabakken L, Vatn MH (2007) Familial adenomatous polyposis patients have high levels of arachidonic acid and docosahexaenoic acid and low levels of linoleic acid and alpha-linolenic acid in serum phospholipids. Int J Cancer 120(3):632–637PubMedGoogle Scholar
  99. 99.
    Brink M, Weijenberg MP, De Goeij AF, Schouten LJ, Koedijk FD, Roemen GM, Lentjes MH, De Bruïne AP, Goldbohm RA, Van Den Brandt PA (2004) Fat and K-ras mutations in ­sporadic colorectal cancer in The Netherlands Cohort Study. Carcinogenesis 25(9):1619–1628PubMedGoogle Scholar
  100. 100.
    Weijenberg MP, Lüchtenborg M, de Goeij AF, Brink M, van Muijen GN, de Bruïne AP, Goldbohm RA, van den Brandt PA (2007) Dietary fat and risk of colon and rectal cancer with aberrant MLH1 expression, APC or KRAS genes. Cancer Causes Control 18(8):865–879PubMedGoogle Scholar
  101. 101.
    Kim EJ, Holthuizen PE, Park HS, Ha YL, Jung KC, Park JH (2002) Trans-10, cis-12-conjugated linoleic acid inhibits Caco-2 colon cancer cell growth. Am J Physiol Gastrointest Liver Physiol 283(2):G357–G367PubMedGoogle Scholar
  102. 102.
    Miller A, Stanton C, Devery R (2001) Modulation of arachidonic acid distribution by conjugated linoleic acid isomers and linoleic acid in MCF-7 and SW480 cancer cells. Lipids 36(10):1161–1168PubMedGoogle Scholar
  103. 103.
    Wielinga PY, Harthoorn LF, Verschuren L, Schoemaker MH, Jouni ZE, van Tol EA, Kleemann R, Kooistra T (2012) Arachidonic acid/docosahexaenoic acid-supplemented diet in early life reduces body weight gain, plasma lipids, and adiposity in later life in ApoE*3Leiden mice. Mol Nutr Food Res 56(7):1081–1089PubMedGoogle Scholar
  104. 104.
    Banni S (2002) Conjugated linoleic acid metabolism. Curr Opin Lipidol 13(3):261–266PubMedGoogle Scholar
  105. 105.
    Nakamora YK, Flintoff-Dye N, Omaye ST (2008) Conjugated linoleic acid modulation of risk factors associated with atherosclerosis. Nutr Metab (Lond) 5:22Google Scholar
  106. 106.
    Martinez K, Kennedy A, West T, Milatovic D, Aschner M, McIntosh M (2010) Trans-10, cis-12-conjugated linoleic acid instigates inflammation in human adipocytes compared with preadipocytes. J Biol Chem 285(23):17701–17712PubMedGoogle Scholar
  107. 107.
    Yu Y, Correll PH, Vanden Heuvel JP (2002) Conjugated linoleic acid decreases production of pro-inflammatory products in macrophages: evidence for a PPARγ-dependent mechanism. Biochim Biophys Acta 1581(3):89–99PubMedGoogle Scholar
  108. 108.
    Huang G, Zhong X, Cao Y, Chen Y (2007) Antiproliferative effects of conjugated linoleic acid on human colon adenocarcinoma cell line Caco-2. Asia Pac J Clin Nutr 16(suppl 1):432–436PubMedGoogle Scholar
  109. 109.
    Degen C, Ecker J, Piegholdt S, Liebisch G, Schmitz G, Jahreis G (2011) Metabolic and growth inhibitory effects of conjugated fatty acids in the cell line HT-29 with special regard to the conversion of t11, t13-CLA. Biochim Biophys Acta 1811(12):1070–1080PubMedGoogle Scholar
  110. 110.
    Bozzo F, Bocca C, Colombatto S, Miglietta A (2007) Antiproliferative effect of conjugated linoleic acid in caco-2 cells: involvement of PPARγ and APC/β-catenin pathways. Chem Biol Interact 169(2):110–121PubMedGoogle Scholar
  111. 111.
    Soel SM, Choi OS, Bang MH, Park JHY, Kim WK (2007) influence of conjugated linoleic acid isomers on the metastasis of colon cancer cells in vitro and in vivo. J Nutr Biochem 18:650–657PubMedGoogle Scholar
  112. 112.
    Poirier H, Shapiro JS, Kim RJ, Lazar MA (2006) Nutritional supplementation with trans-10, cis-12-conjugated linoleic acid induces inflammation of white adipose tissue. Diabetes 55(6):1634–1641PubMedGoogle Scholar
  113. 113.
    Reynolds CM, Draper E, Keogh B, Rahman A, Moloney AP, Mills KHG, Loscher CE, Roche HM (2009) A conjugated linoleic acid-enriched beef diet attenuates lipopolysaccharide-induced inflammation in mice in part through PPARγ-mediated suppression of Toll-like receptor 41-3. J Nutr 139(12):2351–2357PubMedGoogle Scholar
  114. 114.
    Kohno H, Suzuki R, Noguchi R, Hosokawa M, Miyashita K, Tanaka T (2002) Dietary conjugated linolenic acid inhibits azoxymethane-induced colonic aberrant crypt foci in rats. Jpn J Cancer Res 93:133–142PubMedGoogle Scholar
  115. 115.
    Park J, Euhus DM, Scherer PE (2001) Paracrine and endocrine effects of adipose tissue on cancer development and progression. Endocr Rev 32:550–570Google Scholar
  116. 116.
    Kim EJ, Jun JG, Park HS, Kim SM, Ha YL, Park JH (2002) Conjugated linoleic acid (CLA) inhibits growth of Caco-2 colon cancer cells: possible mediation by oleamide. Anticancer Res 22:2193–2197PubMedGoogle Scholar
  117. 117.
    Kohno H, Suzuki R, Yasui Y, Hosokawa M, Miyashita K, Tanaka T (2004) Pomegranate seed oil rich in conjugated linolenic acid suppresses chemically induced colon carcinogenesis in rats. Cancer Sci 95(6):481–486PubMedGoogle Scholar
  118. 118.
    Evans NP, Misyak SA, Schmelz EM, Guri AJ, Hontecillas R, Bassaganya-Riera J (2010) Conjugated linoleic acid ameliorates inflammation-induced colorectal cancer in mice through activation of PPARgama. J Nutr 140(3):515–521PubMedGoogle Scholar
  119. 119.
    Shiraishi R, Iwakiri R, Takehiro F, Kuroki T, Kakimoto T, Takashima T, Sakata Y, Tsunada S, Nakashima Y, Yanagita T, Jufimoto K (2010) Conjugated linoleic acid suppresses colon carcinogenesis in azoxymethane-pretreated rats with long-term feeding of diet containing beef tallow. J Gastroenterol 45:625–635PubMedGoogle Scholar
  120. 120.
    Larsson SC, Bergkvist L, Wolk A (2005) High-fat dairy food and conjugated linoleic acid intakes in relation to colorectal cancer incidence in the Swedish Mammography Cohort. Am J Clin Nutr 82(4):894–900PubMedGoogle Scholar
  121. 121.
    Petry FM, Tutton PJ, Barkla DH (1984) The influence of arachidonic acid metabolites on cell division in the intestinal epithelium and in colonic tumors. Prostaglandins Leukot Med 15(3):349–358PubMedGoogle Scholar
  122. 122.
    Hansen Petrik MB, McEntee MF, Chiu C-H, Whelan J (2000) Antagonism of arachidonic acid is linked to the antitumorigenic effect of dietary eicosapentaenoic acid in APCMin/+ mice. J Nutr 130(5):1153–1158Google Scholar
  123. 123.
    Cathcart MC, Lysaght J, Pidgeon GP (2011) Eicosanoid signalling pathways in the development and progression of colorectal cancer: novel approaches for prevention/intervention. Cancer Metastasis Rev 30(3–4):363–385PubMedGoogle Scholar
  124. 124.
    Nakanishi M, Menoret A, Tanaka T, Miyamoto S, Montrose DC, Vella AT, Rosenberg DW (2011) Selective PGE(2) suppression inhibits colon carcinogenesis and modifies local mucosal immunity. Cancer Prev Res (Phila) 4(8):1198–1208Google Scholar
  125. 125.
    Koehne C-H, Dubois RN (2004) COX-2 inhibition and colorectal cancer. Semin Oncol 31(7):12–21PubMedGoogle Scholar
  126. 126.
    Murff HJ, Shu XO, Li H, Dai Q, Kallianpur A, Yang G, Cai H, Wen W, Gao YT, Zheng W (2009) A prospective study of dietary polyunsaturated fatty acids and colorectal cancer risk in Chinese women. Cancer Epidemiol Biomarkers Prev 18(8):2283–2291PubMedGoogle Scholar
  127. 127.
    Busstra MC, Siezen CL, Grubben MJ, van Kranen HJ, Nagengast FM, van’t Veer P (2003) Tissue levels of fish fatty acids and risk of colorectal adenomas: a case-control study (Netherlands). Cancer Causes Control 14(3):269–276PubMedGoogle Scholar
  128. 128.
    Kimura Y, Kono S, Toyomura K, Nagano J, Mizoue T, Moore MA, Mibu R, Tanaka M, Kakeji Y, Maehara Y, Okamura T, Ikejiri K, Futami K, Yasunami Y, Maekawa T, Takenaka K, Ichimiya H, Imaizumi N (2007) Meat, fish and fat intake in relation to subsite-specific risk of colorectal cancer: The Fukuoka Colorectal Cancer Study. Cancer Sci 98(4):590–597PubMedGoogle Scholar
  129. 129.
    Kojima M, Wakai K, Tokudome S, Suzuki K, Tamakoshi K, Watanabe Y, Kawado M, Hashimoto S, Hayakawa N, Ozasa K, Toyoshima H, Suzuki S, Ito Y, Tamakoshi A (2005) JACC Study Group. Serum levels of polyunsaturated fatty acids and risk of colorectal cancer: a prospective study. Am J Epidemiol 161(5):462–471PubMedGoogle Scholar
  130. 130.
    Lin J, Zhang SM, Cook NR, Lee IM, Buring JE (2004) Dietary fat and fatty acids and risk of colorectal cancer in women. Am J Epidemiol 160(10):1011–1022PubMedGoogle Scholar
  131. 131.
    Kakutani S, Ishikura Y, Tateishi N, Horikawa C, Tokuda H, Kontani M, Kawashima H, Sakakibara Y, Kiso Y, Shibata H, Morita I (2011) Supplementation of arachidonic acid-enriched oil increases arachidonic acid contents in plasma phospholipids, but does not increase their metabolites and clinical parameters in Japanese healthy elderly individuals: a randomized controlled study. Lipids Health Dis 10:241PubMedGoogle Scholar
  132. 132.
    Dwivedi C, Natarajan K, Matthees DP (2005) Chemopreventive effects of dietary flaxseed oil on colon tumor development. Nutr Cancer 51(1):52–58PubMedGoogle Scholar
  133. 133.
    Narisawa T, Fukaura Y, Yazawa K, Ishikawa C, Isoda Y, Nishizawa Y (1994) Colon cancer prevention with a small amount of dietary perilla oil high in alpha-linolenic acid in an animal model. Cancer 73(8):2069–2075PubMedGoogle Scholar
  134. 134.
    Onogi N, Okuno M, Komaki C, Moriwaki H, Kawamori T, Tanaka T, Mori H, Muto Y (1996) Suppressing effect of perilla oil on azoxymethane-induced foci of colonic aberrant crypts in rats. Carcinogenesis 17(6):1291–1296PubMedGoogle Scholar
  135. 135.
    Bommareddy A, Zhang X, Schrader D, Kaushik RS, Zeman D, Matthees DP, Dwivedi C (2009) Effects of dietary flaxseed on intestinal tumorigenesis in Apc(Min) mouse. Nutr Cancer 61(2):276–283PubMedGoogle Scholar
  136. 136.
    Chiang YL, Haddad E, Rajaram S, Shavlik D, Sabaté J (2012) The effect of dietary walnuts compared to fatty fish on eicosanoids, cytokines, soluble endothelial adhesion molecules and lymphocyte subsets: a randomized, controlled crossover trial. Prostaglandins Leukot Essent Fatty Acids 87(4–5):111–117PubMedGoogle Scholar
  137. 137.
    Hassan A, Ibrahim A, Mbodji K, Coëffier M, Ziegler F, Bounoure F, Chardigny JM, Skiba M, Savoye G, Déchelotte P, Marion-Letellier R (2010) An α-linolenic acid-rich formula reduces oxidative stress and inflammation by regulating NF-κB in rats with TNBS-induced colitis. J Nutr 140(10):1714–1721PubMedGoogle Scholar
  138. 138.
    Nounou HA, Deif MM, Shalaby MA (2012) Effect of flaxseed supplementation and exercise training on lipid profile, oxidative stress and inflammation in rats with myocardial ischemia. Lipids Health Dis 11(1):129PubMedGoogle Scholar
  139. 139.
    Poudel-Tandukar K, Sato M, Ejima Y, Nanri A, Matsushita Y, Imaizumi K, Mizoue T (2012) Relationship of serum fatty acid composition and desaturase activity to C-reactive protein in Japanese men and women. Atherosclerosis 220(2):520–524PubMedGoogle Scholar
  140. 140.
    Tyagi A, Kumar U, Reddy S, Santosh VS, Mohammed SB, Ehtesham NZ, Ibrahim A (2012) Attenuation of colonic inflammation by partial replacement of dietary linoleic acid with α-linolenic acid in a rat model of inflammatory bowel disease. Br J Nutr 108(9):1612–1622PubMedGoogle Scholar
  141. 141.
    Vanden Heuvel JP (2012) Nutrigenomics and nutrigenetics of ω3 polyunsaturated fatty acids. Prog Mol Biol Transl Sci 108:75–112PubMedGoogle Scholar
  142. 142.
    Park HJ, Park JS, Hayek MG, Reinhart GA, Chew BP (2011) Dietary fish oil and flaxseed oil suppress inflammation and immunity in cats. Vet Immunol Immunopathol 141(3–4):301–306PubMedGoogle Scholar
  143. 143.
    Baranowski M, Enns J, Blewett H, Yakandawala U, Zahradka P, Taylor CG (2012) Dietary flaxseed oil reduces adipocyte size, adipose monocyte chemoattractant protein-1 levels and T-cell infiltration in obese, insulin-resistant rats. Cytokine 59(2):382–391PubMedGoogle Scholar
  144. 144.
    Caughey GE, Mantzioris E, Givson RA, Cleland LG, James MJ (1996) The effect o human tumor necrosis factor α and interleukin 1ẞ production of diets enriched in n-3 fatty acids from vegetable oil or fish oil. Am J Clin Nutr 63:116–122PubMedGoogle Scholar
  145. 145.
    Gopinath B, Buyken AE, Flood VM, Empson M, Rochtchina E, Mitchell P (2011) Consumption of polyunsaturated fatty acids, fish, and nuts and risk of inflammatory disease mortality. Am J Clin Nutr 93(5):1073–1079PubMedGoogle Scholar
  146. 146.
    Zhao G, Etherton TD, Martin KR, West SG, Gillies PJ, Kris-Etherton PM (2004) Dietary alpha-linolenic acid reduces inflammatory and lipid cardiovascular risk factors in hypercholesterolemic men and women. J Nutr 134(11):2991–2997PubMedGoogle Scholar
  147. 147.
    Schloss I, Kidd MS, Tichelaar HY, Young GO, O’Keefe SJ (1997) Dietary factors associated with a low risk of colon cancer in coloured west coast fishermen. S Afr Med J 87:152–158PubMedGoogle Scholar
  148. 148.
    Anti M, Marra G, Armelao F, Bartoli GM, Ficarelli R, Percesepe A, De Vitis I, Maria G, Sofo L, Rapaccini GL et al (1992) Effect of omega-3 fatty acids on rectal mucosal cell proliferation in subjects at risk for colon cancer. Gastroenterology 103:883–891PubMedGoogle Scholar
  149. 149.
    Anti M, Armelao F, Marra G, Percesepe A, Bartoli GM, Palozza P, Parrella P, Canetta C, Gentiloni N, De Vitis I et al (1994) Effects of different doses of fish oil on rectal cell proliferation in patients with sporadic colonic adenomas. Gastroenterology 107:1709–1718PubMedGoogle Scholar
  150. 150.
    Takahashi M, Minamoto T, Yamashita N, Yazawa K, Sugimura T, Esumi H (1993) Reduction in formation and growth of 1,2-dimethylhydrazine-induced aberrant crypt foci in rat colon by docosahexaenoic acid. Cancer Res 53:2786–2789PubMedGoogle Scholar
  151. 151.
    Takahashi M, Fukutake M, Isoi T, Fukuda K, Sato H, Yazawa K, Sugimura T, Wakabayashi K (1997) Suppression of azoxymethane-induced rat colon carcinoma development by a fish oil component, docosahexaenoic acid (DHA). Carcinogenesis 18:1337–1342PubMedGoogle Scholar
  152. 152.
    Narayanan BA, Narayanan NK, Reddy BS (2001) Docosahexaenoic acid regulated genes and transcription factors inducing apoptosis in human colon cancer cells. Int J Oncol 19:1255–1262PubMedGoogle Scholar
  153. 153.
    Calviello G, Di Nicuolo F, Gragnoli S, Piccioni E, Serini S, Maggiano N, Tringali G, Navarra P, Ranalletti FO, Palozza P (2004) n-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE2 induced ERK-1 and -2 and HIF-lalpha induction pathway. Carcinogenesis 25:2303–2310PubMedGoogle Scholar
  154. 154.
    Engelbrecht A-M, Toit-Kohn J-L, Ellis B, Thomas M, Nell T, Smith R (2008) Differential induction of apoptosis and inhibition of the PI3-kinase pathway by saturated, monounsaturated and polyunsaturated fatty acids in a colon cancer cell model. Apoptosis 13:1368–1377PubMedGoogle Scholar
  155. 155.
    Kolar SS, Barhoumi R, Callaway ES, Fan YY, Wang N, Lupton JR, Chapkin RS (2007) Synergy between docosahexaenoic acid and butyrate elicits p53-independent apoptosis via mitochondrial Ca(2+) accumulation in colonocytes. Am J Physiol Gastrointest Liver Physiol 293:G935–G943PubMedGoogle Scholar
  156. 156.
    Siriwardhana N, Kalupahana NS, Moustaid-Moussa N (2012) Health benefits of n-3 polyunsaturated fatty acids: eicosapentaenoic acid and docosahexaenoic acid. Adv Food Nutr Res 65:211–222PubMedGoogle Scholar
  157. 157.
    Allred CD, Talbert DR, Southard RC, Wang X, Kilgore MW (2008) PPARgamma1 as a molecular target of eicosapentaenoic acid in human colon cancer (HT-29) cells. J Nutr 138:250–256PubMedGoogle Scholar
  158. 158.
    Dommels YE, Haring MM, Keestra NG, Alink GM, van Bladeren PJ, van Ommen B (2003) The role of cyclooxygenase in n-6 and n-3 polyunsaturated fatty acid mediated effects on cell proliferation, PGE(2) synthesis and cytotoxicity in human colorectal carcinoma cell lines. Carcinogenesis 24:385–392PubMedGoogle Scholar
  159. 159.
    Kumamoto-Yonezawa Y, Sasaki R, Ota Y, Suzuki Y, Fukushima S, Hada T, Uryu K, Sugimura K, Yoshida H, Mizushina Y (2009) Cell cycle arrest triggered by conjugated eicosapentaenoic acid occurs through several mechanisms including G1 checkpoint activation by induced RPA and ATR expression. Biochim Biophys Acta 1790:339–346PubMedGoogle Scholar
  160. 160.
    Reddy BS, Maruyama H (1986) Effect of dietary fish oil on azoxymethane-induced colon carcinogenesis in male F344 rats. Cancer Res 46(7):3367–3370PubMedGoogle Scholar
  161. 161.
    Whelan J, Petrik MB, McEntee MF, Obukowicz MG (2002) Dietary EPA reduces tumor load in APCMin/+ mice by altering arachidonic acid metabolism, but conjugated linoleic acid, gamma-and-alpha-linoleic acids have no effect. Adv Exp Med Biol 507:579–584PubMedGoogle Scholar
  162. 162.
    Petrik MB, McEntee MF, Johnson BT, Obukowicz MB, Whelan J (2000) Highly unsaturated (n-3) fatty acids, but not alpha-linolenic, conjugated linolenic or gamma-linolenic acids, reduce tumorigenesis in Apc(Min/+) mice. J Nutr 130(10):2434–2443PubMedGoogle Scholar
  163. 163.
    Fini L, Piazzi G, Ceccarelli C, Daoud Y, Belluzzi A, Munarini A, Graziani G, Fogliano V, Selgrad M, Garcia M, Gasbarrini A, Genta RM, Boland CR, Ricciardiello L (2010) Highly purified eicosapentaenoic acid as free fatty acids strongly suppresses polyps in Apc(Min/+) mice. Clin Cancer Res 16(23):5703–5711PubMedGoogle Scholar
  164. 164.
    Minoura T, Takata T, Sakaguchi M, Takada H, Yamamura M, Hioki K, Yamamoto M (1988) Effect of dietary eicosapentaenoic acid on azoxymethane-induced colon carcinogenesis in rats. Cancer Res 48:4790–4794PubMedGoogle Scholar
  165. 165.
    Simopoulos AP (2006) Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed Pharmacother 60(9):502–507PubMedGoogle Scholar
  166. 166.
    Simopoulos AP (2011) Evolutionary aspects of diet: the omega-6/omega-3 ratio and the brain. Mol Neurobiol 44(2):203–215PubMedGoogle Scholar
  167. 167.
    Huang YC, Jessup JM, Forse RA, Flickner S, Pleskow D, Anastopoulos HT, Ritter V, Blackburn GL (1996) N-3 fatty acids decrease colonic epithelial cell proliferation in high-risk bowel mucosa. Lipids 31(suppl):S313–S317PubMedGoogle Scholar
  168. 168.
    Staessen L, De Henauw S, De Bacquer D, De Backer G, Van Peteghem C (1998) Fat sources in the Belgian diet. Ann Nutr Metab 42(3):138–150PubMedGoogle Scholar
  169. 169.
    Staessen L, De Bacquer D, De Henauw S, De Backer G, Van Peteghem C (1998) Fatty acid composition of the Belgian diet: estimates derived from the Belgian Interuniversity Research on Nutrition and Health. Ann Nutr Metab 42(3):151–159PubMedGoogle Scholar
  170. 170.
    Pot GK, Geelen A, van Heijningen EM, Siezen CL, van Kranen HJ, Kampman E (2008) Opposing Associations of serum n-3 and n-6 polyunsaturated fatty acids with colorectal adenoma risk: an endoscopy-based case-control study. Int J Cancer 123(8):1974–1977PubMedGoogle Scholar
  171. 171.
    Larsson SC, Wolk A (2006) Meat consumption and risk of colorectal cancer: a meta-analysis of prospective studies. Int J Cancer 119(11):2657–2664PubMedGoogle Scholar
  172. 172.
    Norat T, Lukanova A, Ferrari P, Riboli E (2002) Meat consumption and colorectal cancer risk: dose-response meta-analysis of epidemiological studies. Int J Cancer 98(2):241–256PubMedGoogle Scholar
  173. 173.
    Giovannucci E, Rimm EB, Stampfer MJ, Colditz GA, Ascherio A, Willet WC (1994) Intake of fat, meat, and fiber in relation to risk of colon cancer in men. Cancer Res 54(9):2390–2397PubMedGoogle Scholar
  174. 174.
    Wakai K, Hirose K, Matsuo K, Ito H, Kuriki K, Suzuki T, Kato T, Hirai T, Kanemitsu Y, Tajima K (2006) Dietary risk factors for colon and rectal cancers: a comparative case-control study. J Epidemiol 16(3):125–135PubMedGoogle Scholar
  175. 175.
    Ognjanovic S, Yamamoto J, Maskarinec G, Le Marchand L (2006) NAT2, meat consumption and colorectal cancer incidence: an ecological study among 27 countries. Cancer Causes Control 17(9):1175–1182PubMedGoogle Scholar
  176. 176.
    Kim KH, Park HS (2003) Dietary supplementation of conjugated linoleic acid reduces colon tumor incidence in DMH-treated rats by increasing apoptosis with modulation of biomarkers. Nutrition 19(9):772–777PubMedGoogle Scholar
  177. 177.
    Williams CD, Satia JA, Adair LS, Stevens J, Galanko J, Keku TO, Sandler RS (2010) Association of red meat, fat, and protein intake with distal colorectal cancer risk. Nutr Cancer 62(6):701–709PubMedGoogle Scholar
  178. 178.
    Sofi F, Cesari F, Abbate R, Gensini GF, Casini A (2008) Adherence to Mediterranean diet and health status: meta-analysis. BMJ 337:a1344PubMedGoogle Scholar
  179. 179.
    Psaltopoulou T, Kosti RI, Haidopoulos D, Dimopoulos M, Panagiotakos DB (2011) Olive oil intake is inversely related to cancer prevalence: a systematic review and a meta-analysis of 13,800 patients and 23,340 controls in 19 observational studies. Lipids Health Dis 10(127):1–16Google Scholar
  180. 180.
    Reddy J, Mitrou PN, Krebs-Smith SM, Wirfalt E, Flood A, Kipnis V, Leitzmann M, Mouw M, Mouw T, Hollenbeck A, Schatzkin A, Subar AF (2008) Index-based dietary patterns and risk of colorectal cancer: the NIH-AARP Diet and Health Study. Am J Epidemiol 168:38–48Google Scholar
  181. 181.
    Dixon LB, Subar AF, Peters U, Weissfeld JL, Bresalier RS, Risch A, Schatzkin A, Hayes RB (2007) Adherence to the USDA Food Guide, DASH Eating Plan, and Mediterranean dietary pattern reduces risk of colorectal adenoma. J Nutr 137(11):2443–2450PubMedGoogle Scholar
  182. 182.
    Fung RR, Hu FB, Chiuve SE, Fuchs CS, Giovannucci E (2010) The Mediterranean and Dietary Approaches to Stop Hypertension (DASH) diets and colorectal cancer. Am J Clin Nutr 92:1429–1435PubMedGoogle Scholar
  183. 183.
    Macquart-Moulin G, Riboli E, Cornée J, Carnay B, Berthezéne P, Day N (1986) Case-control study on colorectal cancer and diet in Marseilles. Int J Cancer 38(2):183–191PubMedGoogle Scholar
  184. 184.
    Braga C, La Vecchia C, Franceschi S, Negri E, Parpinel M, Decarli A, Giacosa A, Trichopoulos D (1998) Olive oil, other seasoning fats and the risk of colorectal carcinoma. Cancer 82:448–453PubMedGoogle Scholar
  185. 185.
    Schwartz B, Birk Y, Raz A, Madar Z (2004) Nutritional-pharmacological combinations—a novel approach to reducing colon cancer incidence. Eur J Nutr 43(4):221–229PubMedGoogle Scholar
  186. 186.
    Bartoli R, Fernández-Bañares F, Navarro E, Castellà E, Mañé J, Alvarez M, Pastor C, Cabré E, Gassull MA (2000) Effect of olive oil on early and late events of colon carcinogenesis in rats: modulation of arachidonic acid metabolism and local prostaglandin E2 synthesis. Gut 46:191–199PubMedGoogle Scholar
  187. 187.
    Klampfer L, Heerdt BF, Velcich A, Gaffney-Stomberg E, Wang D, Lin E, Augenlicht LH (2012) Dietary modulation of colon cancer: effects on intermediary metabolism, mucosal cell differentiation, and inflammation. In: Markowitz SD, Berger NA (eds) Energy balance and gastrointestinal cancer. Energy balance and cancer, vol 4. Springer, New York, p 4764Google Scholar
  188. 188.
    Erdelyi I, Levelnkova N, Lin EY, Pinto JT, Lipkin M, Quimby FW, Holt PR (2009) Western-style diets induce oxidative stress and dysregulate immune responses in the colon in a mouse model of sporadic colon cancer. J Nutr 139:2072–2078PubMedGoogle Scholar
  189. 189.
    Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867PubMedGoogle Scholar
  190. 190.
    Doerner SK, Leung ES, Berger NA, Nadeau JH (2011) High dietary fat promotes inflammation and intestinal neoplasia, independently of diet-induced obesity, in B6.ApcMin/+ congenic-consomic mouse strains. In: Proceedings of the 102nd annual meeting of the American Association for Cancer Research, Orlando, FL, 2–6 Apr 2011. AACR, Philadelphia, PA; 71. Abstract nr 910Google Scholar
  191. 191.
    Larsson SC, Kumlin M, Ingelman-Sundberg M, Wolk A (2004) Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms. Am J Clin Nutr 79:935–945PubMedGoogle Scholar
  192. 192.
    Pendyala S, Neff LM, Suárez-Fariñas M, Holt PR (2011) Diet-induced weight loss reduces colorectal inflammation: implications for colorectal carcinogenesis. Am J Clin Nutr 93(2):234–242PubMedGoogle Scholar
  193. 193.
    Li L (2012) Obesity, insulin resistance pathway factors and colon cancer. In: Markowitz SD, Berger NA (eds) Energy balance and gastrointestinal cancer. Energy balance and cancer, vol 4. Springer, New York, pp 111–129Google Scholar
  194. 194.
    Meydani SN, Endres S, Woods MM, Goldin BR, Soo C, Morrill-Labrode A, Dinarello CA, Gorbach SL (1991) Oral (n-3) fatty acid supplementation suppresses cytokine production and lymphocyte proliferation: comparison between young and older women. J Nutr 121(4):547–555PubMedGoogle Scholar
  195. 195.
    Toriola AT, Ulrich CM (2011) Is there a potential use for C-reactive protein as a diagnostic and prognostic marker for colorectal cancer? Future Oncol 7(10):1125–1128PubMedGoogle Scholar
  196. 196.
    Abir F, Alva S, Kaminski DL, Longo WE (2005) The role of arachidonic acid regulatory enzymes in colorectal disease. Dis Colon Rectum 48(7):1471–1483PubMedGoogle Scholar
  197. 197.
    Ichimura A, Hirasawa A, Poulain-Godefroy O, Bonnefond A, Hara T, Yengo L, Kimura I, Leloire A, Liu N, Iida K, Choquet H, Besnard P, Lecoeur C, Vivequin S, Ayukawa K, Takeuchi M, Ozawa K, Tauber M, Maffeis C, Morandi A, Buzzetti R, Elliott P, Pouta A, Jarvelin MR, Körner A, Kiess W, Pigeyre M, Caiazzo R, Van Hul W, Van Gaal L, Horber F, Balkau B, Lévy-Marchal C, Rouskas K, Kouvatsi A, Hebebrand J, Hinney A, Scherag A, Pattou F, Meyre D, Koshimizu TA, Wolowczuk I, Tsujimoto G, Froguel P (2012) Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature 483(7389):350–354PubMedGoogle Scholar
  198. 198.
    Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, Li P, Lu WJ, Watkins SM, Olefsky JM (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142(5):687–698PubMedGoogle Scholar
  199. 199.
    Maeda K, Cao H, Kono K, Gorgun CZ, Furuhashi M, Uysal KT, Cao Q, Atsumi G, Malone H, Krishnan B, Minokoshi Y, Kahn BB, Parker RA, Hotamisligil GS (2005) Adipocyte/macrophage fatty acid binding proteins control integrated metabolic responses in obesity and diabetes. Cell Metab 1(2):107–119PubMedGoogle Scholar
  200. 200.
    Makowski L, Gὄkhan SH (2005) The role of fatty acid binding proteins in metabolic syndrome and atherosclerosis. Curr Opin Lipidol 16:543–548PubMedGoogle Scholar
  201. 201.
    Stryjecki C, Mutch DM (2011) Fatty acid-gene interactions, adipokines and obesity. Eur J Clin Nutr 65(3):285–297PubMedGoogle Scholar
  202. 202.
    Sun S, Ji Y, Kersten S, Qi L (2012) Mechanisms of inflammatory responses in obese adipose tissue. Annu Rev Nutr 32:261–286PubMedGoogle Scholar
  203. 203.
    Dupertuis YM, Meguid MM, Pichard C (2007) Colon cancer therapy: new perspectives of nutritional manipulations using polyunsaturated fatty acids. Curr Opin Clin Nutr Metab Care 10(4):427–432PubMedGoogle Scholar
  204. 204.
    Calviello G, Di Nicuolo F, Serini S, Piccioni E, Boninsegna A, Maggiano N, Ranelletti FO, Palozza P (2005) Docosahexaenoic acid enhances the susceptibility of human colorectal cancer cells to 5-fluorouracil. Cancer Chemother Pharmacol 55(1):12–20PubMedGoogle Scholar
  205. 205.
    Hardman WE (2004) (n-3) Fatty acids and cancer therapy. J Nutr 134:3427S–3430SPubMedGoogle Scholar
  206. 206.
    Wynter MP, Russell ST, Tisdale MJ (2004) Effect of n-3 fatty acids on the antitumour effects of cytotoxic drugs. In Vivo 18(5):543–547PubMedGoogle Scholar
  207. 207.
    Benais-Pont G, Dupertuis YM, Kossovsky MP, Nouet P, Allal AS, Buchegger F, Pichard C (2006) Omega-3 polyunsaturated fatty acids and ionizing radiation: combined cytotoxicity on human colorectal adenocarcinoma cells. Nutrition 22(9):931–939PubMedGoogle Scholar
  208. 208.
    Graveline D (2012) Statins, inflammation and heart disease. spacedoc.com; [cited 12/13/2012]. Available from http://www.spacedoc.com/statins_inflammation_heart_disease.html
  209. 209.
    Nielsen SF, Nordestgaard BG, Bojesen SE (2012) Statin use and reduced cancer-related mortality. N Engl J Med 367(19):1792–1802PubMedGoogle Scholar
  210. 210.
    Poynter JN, Gruber SB, Higgins PD, Almog R, Bonner JD, Rennert HS, Low M, Greenson JK, Rennert G (2005) Statins and the risk of colorectal cancer. N Engl J Med 352(21):2184–2192PubMedGoogle Scholar
  211. 211.
    Graaf MR, Beiderbeck AB, Egberts ACG, Richel DJ, Guchelaar H-J (2004) The risk of cancer in users of statins. J Clin Oncol 22(12):2388–2394PubMedGoogle Scholar
  212. 212.
    Dale KM, Coleman CI, Henyan NN, Kluger J, White CM (2006) Statins and cancer risk. JAMA 295(1):74–80PubMedGoogle Scholar
  213. 213.
    Dechend R, Muller D, Park JK, Fiebeler A, Haller H, Luft FC (2002) Statins and angiotensin II-induced vascular injury. Nephrol Dial Transplant 17:349–353PubMedGoogle Scholar
  214. 214.
    Cimino M, Banfi C, Brioschi M, Gelosa P, Nobili E, Gianella A, Tremoli E, Sironi L (2005) Experimental ischemia: therapy. poster session. J Cereb Blood Flow Metab 25:S39Google Scholar
  215. 215.
    Hernández-Presa MA, Ortego M, Tuñón J, Martín-Ventura JL, Mas S, Blanco-Colio LM, Aparicio C, Ortega L, Gómez-Gerique J, Vivanco F, Egido J (2003) Simvastatin reduces NF-kappaB activity in peripheral mononuclear and in plaque cells of rabbit atheroma more markedly than lipid lowering diet. Cardiovasc Res 57(1):168–177PubMedGoogle Scholar
  216. 216.
    Quist-Paulsen P (2010) Statins and inflammation: an update. Curr Opin Cardiol 25:399–405PubMedGoogle Scholar
  217. 217.
    Schonbeck U, Libby P (2004) Inflammation, immunity and HMG-CoA reductase inhibitors: statins as anti-inflammatory agents? Circulation 109(21 suppl 1):II18–II26PubMedGoogle Scholar
  218. 218.
    Shyamsundar M, McKeown ST, O’Kane CM, Craig TR, Brown V, Thickett DR, Matthay MA, Taggart CC, Backman JT, Elborn JS, McAuley DF (2009) Simvastatin decreases lipopolysaccharide-induced pulmonary inflammation in healthy volunteers. Am J Respir Crit Care Med 179(12):1107–1114PubMedGoogle Scholar
  219. 219.
    Swamy MV, Cooma I, Reddy BS, Rao CV, Lamin B (2002) caspase-3 activity, and apoptosis induction by a combination of HMG-CoA reductase inhibitor and COX-2 inhibitors: a novel approach in developing effective chemopreventive regimens. Int J Oncol 20(4):753–759PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of GeneticsCase Western Reserve University School of MedicineClevelandUSA
  2. 2.Center for Science, Health and Society, Case Comprehensive Cancer CenterCase Western Reserve University School of MedicineClevelandUSA

Personalised recommendations