Advertisement

Adipose Tissue Macrophages in Obesity, Inflammation, and Cancer

  • Carey Nien-Kai LumengEmail author
Chapter
Part of the Energy Balance and Cancer book series (EBAC, volume 7)

Abstract

The chronic low-grade inflammation induced by obesity is a key connection between obesity and disease. It is now understood that the supporting stromal cells in adipose tissue contribute to this inflammatory response in significant ways. Of these, adipose tissue macrophages (ATMs) are major effectors of inflammation in hypertrophic adipose tissue. However, we now know that ATMs are diverse in their phenotypes and have functions that may contribute directly and indirectly to impact cancer risk. This review will summarize our current understanding of the phenotypic diversity in ATMs and how this is altered in obesity. The potential role that ATMs play in breast and ovarian cancer pathogenesis will also be discussed given the close association between adipose tissue and these cancer types.

Keywords

Adipose Tissue Adipose Tissue Inflammation Adipose Tissue Macrophage Milky Spot Modify Cancer Risk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

Support for this work was derived in part from NIH Grant DK090262 and DK092873.

References

  1. 1.
    Hotamisligil GS, Spiegelman BM (1994) Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes 43:1271–1278PubMedCrossRefGoogle Scholar
  2. 2.
    Harkins JM, Moustaid-Moussa N, Chung YJ, Penner KM, Pestka JJ, North CM et al (2004) Expression of interleukin-6 is greater in preadipocytes than in adipocytes of 3T3-L1 cells and C57BL/6J and ob/ob mice. J Nutr 134:2673–2677PubMedGoogle Scholar
  3. 3.
    Christiansen T, Richelsen B, Bruun JM (2005) Monocyte chemoattractant protein-1 is produced in isolated adipocytes, associated with adiposity and reduced after weight loss in morbid obese subjects. Int J Obes Relat Metab Disord 29:146–150CrossRefGoogle Scholar
  4. 4.
    Bruun JM, Lihn AS, Pedersen SB, Richelsen B (2005) MCP-1 release is higher in visceral than subcutaneous human adipose tissue. Implication of macrophages resident in the adipose tissue. J Clin Endocrinol Metab 90:2282–2289PubMedCrossRefGoogle Scholar
  5. 5.
    Eriksson P, Reynisdottir S, Lonnqvist F, Stemme V, Hamsten A, Arner P (1998) Adipose tissue secretion of plasminogen activator inhibitor-1 in non-obese and obese individuals. Diabetologia 41:65–71PubMedCrossRefGoogle Scholar
  6. 6.
    Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808PubMedGoogle Scholar
  7. 7.
    Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ et al (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830PubMedGoogle Scholar
  8. 8.
    Michaud A, Drolet R, Noel S, Paris G, Tchernof A (2012) Visceral fat accumulation is an indicator of adipose tissue macrophage infiltration in women. Metabolism 61:689–698PubMedCrossRefGoogle Scholar
  9. 9.
    Aron-Wisnewsky J, Tordjman J, Poitou C, Darakhshan F, Hugol D, Basdevant A et al (2009) Human adipose tissue macrophages: m1 and m2 cell surface markers in subcutaneous and omental depots and after weight loss. J Clin Endocrinol Metab 94:4619–4623PubMedCrossRefGoogle Scholar
  10. 10.
    Cancello R, Tordjman J, Poitou C, Guilhem G, Bouillot JL, Hugol D et al (2006) Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes 55:1554–1561PubMedCrossRefGoogle Scholar
  11. 11.
    Harman-Boehm I, Bluher M, Redel H, Sion-Vardy N, Ovadia S, Avinoach E et al (2007) Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity. J Clin Endocrinol Metab 92:2240–2247PubMedCrossRefGoogle Scholar
  12. 12.
    Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J et al (2008) Genetics of gene expression and its effect on disease. Nature 452:423–428PubMedCrossRefGoogle Scholar
  13. 13.
    Chen Y, Zhu J, Lum PY, Yang X, Pinto S, MacNeil DJ et al (2008) Variations in DNA elucidate molecular networks that cause disease. Nature 452:429–435PubMedCrossRefGoogle Scholar
  14. 14.
    Yang X, Deignan JL, Qi H, Zhu J, Qian S, Zhong J et al (2009) Validation of candidate causal genes for obesity that affect shared metabolic pathways and networks. Nat Genet 41:415–423PubMedCrossRefGoogle Scholar
  15. 15.
    Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K et al (2005) CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 116:115–124PubMedCrossRefGoogle Scholar
  16. 16.
    Westcott DJ, Delproposto JB, Geletka LM, Wang T, Singer K, Saltiel AR et al (2009) MGL1 promotes adipose tissue inflammation and insulin resistance by regulating 7/4hi monocytes in obesity. J Exp Med 206:3143–3156PubMedCrossRefGoogle Scholar
  17. 17.
    Kitade H, Sawamoto K, Nagashimada M, Inoue H, Yamamoto Y, Sai Y et al (2012) CCR5 plays a critical role in obesity-induced adipose tissue inflammation and insulin resistance by regulating both macrophage recruitment and M1/M2 status. Diabetes 61:1680–1690PubMedCrossRefGoogle Scholar
  18. 18.
    Kim JY, van de Wall E, Laplante M, Azzara A, Trujillo ME, Hofmann SM et al (2007) Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest 117:2621–2637PubMedCrossRefGoogle Scholar
  19. 19.
    Lumeng CN, Deyoung SM, Bodzin JL, Saltiel AR (2007) Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 56:16–23PubMedCrossRefGoogle Scholar
  20. 20.
    Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117:175–184PubMedCrossRefGoogle Scholar
  21. 21.
    Kosteli A, Sugaru E, Haemmerle G, Martin JF, Lei J, Zechner R et al (2010) Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J Clin Invest 120:3466–3479PubMedCrossRefGoogle Scholar
  22. 22.
    Kishore P, Li W, Tonelli J, Lee DE, Koppaka S, Zhang K et al (2010) Adipocyte-derived factors potentiate nutrient-induced production of plasminogen activator inhibitor-1 by macrophages. Sci Transl Med 2:20ra15PubMedCrossRefGoogle Scholar
  23. 23.
    Biswas SK, Mantovani A (2012) Orchestration of metabolism by macrophages. Cell Metab 15:432–437PubMedCrossRefGoogle Scholar
  24. 24.
    Odegaard JI, Ricardo-Gonzalez RR, Red Eagle A, Vats D, Morel CR, Goforth MH et al (2008) Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab 7:496–507PubMedCrossRefGoogle Scholar
  25. 25.
    Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L et al (2007) Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447:1116–1120PubMedCrossRefGoogle Scholar
  26. 26.
    Kang K, Reilly SM, Karabacak V, Gangl MR, Fitzgerald K, Hatano B et al (2008) Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell Metab 7:485–495PubMedCrossRefGoogle Scholar
  27. 27.
    Martinez FO, Gordon S, Locati M, Mantovani A (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177:7303–7311PubMedGoogle Scholar
  28. 28.
    Odegaard JI, Chawla A (2011) Alternative macrophage activation and metabolism. Annu Rev Pathol 6:275–297PubMedCrossRefGoogle Scholar
  29. 29.
    Chawla A, Nguyen KD, Goh YP (2011) Macrophage-mediated inflammation in metabolic disease. Nat Rev Immunol 11:738–749PubMedCrossRefGoogle Scholar
  30. 30.
    Lumeng CN, DelProposto JB, Westcott DJ, Saltiel AR (2008) Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes 57:3239–3246PubMedCrossRefGoogle Scholar
  31. 31.
    Shaul ME, Bennett G, Strissel KJ, Greenberg AS, Obin MS (2010) Dynamic, M2-like remodeling phenotypes of CD11c+ adipose tissue macrophages during high-fat diet—induced obesity in mice. Diabetes 59:1171–1181PubMedCrossRefGoogle Scholar
  32. 32.
    Ichimura A, Hirasawa A, Poulain-Godefroy O, Bonnefond A, Hara T, Yengo L et al (2012) Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature 483:350–354PubMedCrossRefGoogle Scholar
  33. 33.
    Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W et al (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142:687–698PubMedCrossRefGoogle Scholar
  34. 34.
    Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–91PubMedCrossRefGoogle Scholar
  35. 35.
    Kim F, Pham M, Luttrell I, Bannerman DD, Tupper J, Thaler J et al (2007) Toll-like receptor-4 mediates vascular inflammation and insulin resistance in diet-induced obesity. Circ Res 100:1589–1596PubMedCrossRefGoogle Scholar
  36. 36.
    Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS (2006) TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 116:3015–3025PubMedCrossRefGoogle Scholar
  37. 37.
    Himes RW, Smith CW (2010) Tlr2 is critical for diet-induced metabolic syndrome in a murine model. FASEB J 24:731–739PubMedCrossRefGoogle Scholar
  38. 38.
    Rocha VZ, Folco EJ, Sukhova G, Shimizu K, Gotsman I, Vernon AH et al (2008) Interferon-gamma, a Th1 cytokine, regulates fat inflammation: a role for adaptive immunity in obesity. Circ Res 103:467–476PubMedCrossRefGoogle Scholar
  39. 39.
    Yuan M, Konstantopoulos N, Lee J, Hansen L, Li ZW, Karin M et al (2001) Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science 293:1673–1677PubMedCrossRefGoogle Scholar
  40. 40.
    Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM et al (2005) IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 11:191–198PubMedCrossRefGoogle Scholar
  41. 41.
    Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11:98–107PubMedCrossRefGoogle Scholar
  42. 42.
    Goldfine AB, Silver R, Aldhahi W, Cai D, Tatro E, Lee J et al (2008) Use of salsalate to target inflammation in the treatment of insulin resistance and Type 2 diabetes. Clin Transl Sci 1:36–43PubMedCrossRefGoogle Scholar
  43. 43.
    Han J, Lee JE, Jin J, Lim JS, Oh N, Kim K et al (2011) The spatiotemporal development of adipose tissue. Development 138:5027–5037PubMedCrossRefGoogle Scholar
  44. 44.
    Wu D, Molofsky AB, Liang HE, Ricardo-Gonzalez RR, Jouihan H, Bando JK et al (2011) Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332(6026):243–247PubMedCrossRefGoogle Scholar
  45. 45.
    Ricardo-Gonzalez RR, Red Eagle A, Odegaard JI, Jouihan H, Morel CR, Heredia JE et al (2010) IL-4/STAT6 immune axis regulates peripheral nutrient metabolism and insulin sensitivity. Proc Natl Acad Sci U S A 107:22617–22622PubMedCrossRefGoogle Scholar
  46. 46.
    Morris DL, Singer K, Lumeng CN (2011) Adipose tissue macrophages: phenotypic plasticity and diversity in lean and obese states. Curr Opin Clin Nutr Metab Care 14:341–346PubMedCrossRefGoogle Scholar
  47. 47.
    Wentworth JM, Naselli G, Brown WA, Doyle L, Phipson B, Smyth GK et al (2010) Pro-inflammatory CD11c+CD206+ adipose tissue macrophages are associated with insulin resistance in human obesity. Diabetes 59:1648–1656PubMedCrossRefGoogle Scholar
  48. 48.
    Li P, Lu M, Nguyen MTA, Bae E, Chapman J, Feng D et al (2010) Functional heterogeneity of CD11C positive adipose tissue macrophages in diet-induced obese mice. J Biol Chem 285:15333–15345PubMedCrossRefGoogle Scholar
  49. 49.
    Divoux A, Tordjman J, Lacasa D, Veyrie N, Hugol D, Aissat A et al (2010) Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes 59:2817–2825PubMedCrossRefGoogle Scholar
  50. 50.
    Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E et al (2005) Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 46:2347–2355PubMedCrossRefGoogle Scholar
  51. 51.
    Oh DY, Morinaga H, Talukdar S, Bae EJ, Olefsky JM (2012) Increased macrophage migration into adipose tissue in obese mice. Diabetes 61:346–354PubMedCrossRefGoogle Scholar
  52. 52.
    Nishimura S, Manabe I, Nagasaki M, Seo K, Yamashita H, Hosoya Y et al (2008) In vivo imaging in mice reveals local cell dynamics and inflammation in obese adipose tissue. J Clin Invest 118:710–721PubMedGoogle Scholar
  53. 53.
    Tsou CL, Peters W, Si Y, Slaymaker S, Aslanian AM, Weisberg SP et al (2007) Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest 117:902–909PubMedCrossRefGoogle Scholar
  54. 54.
    Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R et al (2006) MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in ­obesity. J Clin Invest 116:1494–1505PubMedCrossRefGoogle Scholar
  55. 55.
    Huber J, Loffler M, Bilban M, Reimers M, Kadl A, Todoric J et al (2007) Prevention of high-fat diet-induced adipose tissue remodeling in obese diabetic mice by n-3 polyunsaturated fatty acids. Int J Obes 31:1004–1013CrossRefGoogle Scholar
  56. 56.
    Strissel KJ, Stancheva Z, Miyoshi H, Perfield JW II, DeFuria J, Jick Z et al (2007) Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 56:2910–2918PubMedCrossRefGoogle Scholar
  57. 57.
    Feng D, Tang Y, Kwon H, Zong H, Hawkins M, Kitsis RN et al (2011) High-fat diet-induced adipocyte cell death occurs through a cyclophilin d intrinsic signaling pathway independent of adipose tissue inflammation. Diabetes 60:2134–2143PubMedCrossRefGoogle Scholar
  58. 58.
    Lumeng CN, Deyoung SM, Saltiel AR (2007) Macrophages block insulin action in adipocytes by altering expression of signaling and glucose transport proteins. Am J Physiol Endocrinol Metab 292:E166–E174PubMedCrossRefGoogle Scholar
  59. 59.
    Bilkovski R, Schulte DM, Oberhauser F, Mauer J, Hampel B, Gutschow C et al (2011) Adipose tissue macrophages inhibit adipogenesis of mesenchymal precursor cells via wnt-5a in humans. Int J Obes 35:1450–1454CrossRefGoogle Scholar
  60. 60.
    Trayhurn P, Wang B, Wood IS (2008) Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity? Br J Nutr 100:227–235PubMedCrossRefGoogle Scholar
  61. 61.
    Bourlier V, Zakaroff-Girard A, Miranville A, De Barros S, Maumus M, Sengenes C et al (2008) Remodeling phenotype of human subcutaneous adipose tissue macrophages. Circulation 117:806–815PubMedCrossRefGoogle Scholar
  62. 62.
    Stefanovic-Racic M, Yang X, Turner MS, Mantell BS, Stolz DB, Sumpter TL et al (2012) Dendritic cells promote macrophage infiltration and comprise a substantial proportion of obesity-associated increases in CD11c+ cells in adipose tissue and liver. Diabetes 61:2330–2339PubMedCrossRefGoogle Scholar
  63. 63.
    Khandekar MJ, Cohen P, Spiegelman BM (2011) Molecular mechanisms of cancer development in obesity. Nat Rev Cancer 11:886–895PubMedCrossRefGoogle Scholar
  64. 64.
    O’Brien J, Martinson H, Durand-Rougely C, Schedin P (2012) Macrophages are crucial for epithelial cell death and adipocyte repopulation during mammary gland involution. Development 139:269–275PubMedCrossRefGoogle Scholar
  65. 65.
    O’Brien J, Lyons T, Monks J, Lucia MS, Wilson RS, Hines L et al (2010) Alternatively activated macrophages and collagen remodeling characterize the postpartum involuting mammary gland across species. Am J Pathol 176:1241–1255PubMedCrossRefGoogle Scholar
  66. 66.
    Fischer-Posovszky P, Wang QA, Asterholm IW, Rutkowski JM, Scherer PE (2011) Targeted deletion of adipocytes by apoptosis leads to adipose tissue recruitment of alternatively activated m2 macrophages. Endocrinology 152:3074–3081PubMedCrossRefGoogle Scholar
  67. 67.
    Laoui D, Movahedi K, Van Overmeire E, Van den Bossche J, Schouppe E, Mommer C et al (2011) Tumor-associated macrophages in breast cancer: distinct subsets, distinct functions. Int J Dev Biol 55:861–867PubMedCrossRefGoogle Scholar
  68. 68.
    Egeblad M, Ewald AJ, Askautrud HA, Truitt ML, Welm BE, Bainbridge E et al (2008) Visualizing stromal cell dynamics in different tumor microenvironments by spinning disk confocal microscopy. Dis Model Mech 1:155–167; discussion 165Google Scholar
  69. 69.
    Pollard JW (2008) Macrophages define the invasive microenvironment in breast cancer. J Leukoc Biol 84:623–630PubMedCrossRefGoogle Scholar
  70. 70.
    Cecchini RS, Costantino JP, Cauley JA, Cronin WM, Wickerham DL, Land SR et al (2012) Body mass index and the risk for developing invasive breast cancer among high-risk women in NSABP P-1 and STAR breast cancer prevention trials. Cancer Prev Res 5:583–592CrossRefGoogle Scholar
  71. 71.
    McTiernan A, Irwin M, Vongruenigen V (2010) Weight, physical activity, diet, and prognosis in breast and gynecologic cancers. J Clin Oncol 28:4074–4080PubMedCrossRefGoogle Scholar
  72. 72.
    Morris PG, Hudis CA, Giri D, Morrow M, Falcone DJ, Zhou XK et al (2011) Inflammation and increased aromatase expression occur in the breast tissue of obese women with breast cancer. Cancer Prev Res 4:1021–1029CrossRefGoogle Scholar
  73. 73.
    Subbaramaiah K, Howe LR, Bhardwaj P, Du B, Gravaghi C, Yantiss RK et al (2011) Obesity is associated with inflammation and elevated aromatase expression in the mouse mammary gland. Cancer Prev Res (Phila) 4:329–346CrossRefGoogle Scholar
  74. 74.
    Lin EY, Nguyen AV, Russell RG, Pollard JW (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193:727–740PubMedCrossRefGoogle Scholar
  75. 75.
    Mor G, Yue W, Santen RJ, Gutierrez L, Eliza M, Berstein LM et al (1998) Macrophages, estrogen and the microenvironment of breast cancer. J Steroid Biochem Mol Biol 67:403–411PubMedCrossRefGoogle Scholar
  76. 76.
    Ozols RF, Bookman MA, Connolly DC, Daly MB, Godwin AK, Schilder RJ et al (2004) Focus on epithelial ovarian cancer. Cancer Cell 5:19–24PubMedCrossRefGoogle Scholar
  77. 77.
    Gerber SA, Rybalko VY, Bigelow CE, Lugade AA, Foster TH, Frelinger JG et al (2006) Preferential attachment of peritoneal tumor metastases to omental immune aggregates and possible role of a unique vascular microenvironment in metastatic survival and growth. Am J Pathol 169:1739–1752PubMedCrossRefGoogle Scholar
  78. 78.
    Shimotsuma M, Shields JW, Simpson-Morgan MW, Sakuyama A, Shirasu M, Hagiwara A et al (1993) Morpho-physiological function and role of omental milky spots as omentum-associated lymphoid tissue (OALT) in the peritoneal cavity. Lymphology 26:90–101PubMedGoogle Scholar
  79. 79.
    Lumeng CN, Liu J, Geletka L, Delaney C, Delproposto J, Desai A et al (2011) Aging is ­associated with an increase in T cells and inflammatory macrophages in visceral adipose ­tissue. J Immunol 187:6208–6216PubMedCrossRefGoogle Scholar
  80. 80.
    Morris DL, Oatmen KE, Wang T, DelProposto JL, Lumeng CN (2012) CX3CR1 deficiency does not influence trafficking of adipose tissue macrophages in mice with diet-induced obesity. Obesity 20:1189–1199PubMedCrossRefGoogle Scholar
  81. 81.
    Cao L, Hu X, Zhang Y, Sun XT (2011) Omental milky spots in screening gastric cancer stem cells. Neoplasma 58:20–26PubMedCrossRefGoogle Scholar
  82. 82.
    Sorensen EW, Gerber SA, Sedlacek AL, Rybalko VY, Chan WM, Lord EM (2009) Omental immune aggregates and tumor metastasis within the peritoneal cavity. Immunol Res 45:185–194PubMedCrossRefGoogle Scholar
  83. 83.
    Oosterling SJ, van der Bij GJ, Bogels M, van der Sijp JR, Beelen RH, Meijer S et al (2006) Insufficient ability of omental milky spots to prevent peritoneal tumor outgrowth supports omentectomy in minimal residual disease. Cancer Immunol Immunother 55:1043–1051PubMedCrossRefGoogle Scholar
  84. 84.
    Alvero AB, Montagna MK, Craveiro V, Liu L, Mor G (2012) Distinct subpopulations of epithelial ovarian cancer cells can differentially induce macrophages and T regulatory cells toward a pro-tumor phenotype. Am J Reprod Immunol 67:256–265PubMedCrossRefGoogle Scholar
  85. 85.
    Cao L, Hu X, Zhang Y (2009) Omental milky spots—highly efficient “natural filter” for screening gastric cancer stem cells. Med Hypotheses 73:1017–1018PubMedCrossRefGoogle Scholar
  86. 86.
    Korkaya H, Kim GI, Davis A, Malik F, Henry NL, Ithimakin S et al (2012) Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol Cell 47:570–584PubMedCrossRefGoogle Scholar
  87. 87.
    DiDonato JA, Mercurio F, Karin M (2012) NF-kappaB and the link between inflammation and cancer. Immunol Rev 246:379–400PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Pediatrics and Communicable DiseasesUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations