Skip to main content

Vascular Targeting of Adipose Tissue

  • Chapter
  • First Online:
Book cover Obesity, Inflammation and Cancer

Part of the book series: Energy Balance and Cancer ((EBAC,volume 7))

  • 1713 Accesses

Abstract

Obesity is a rapidly increasing worldwide threat to health due to its ­association with cardiovascular disease, diabetes, cancer, and a number of other medical conditions. Considerable efforts are underway to develop drugs for obesity prevention and treatment. Like tumors, white adipose tissue (WAT) overgrowing in obesity depends on functional blood vessels for its expansion and maintenance. Recent findings indicate the apparent vasculogenic role of WAT-derived cells recruited by tumors. Based on these notions, endothelial and perivascular cell populations in WAT have been considered as potential therapy targets in the context of obesity and cancer. In this chapter, we discuss studies aimed at inactivation of WAT vasculature and evaluate it as a prospective approach to treating obesity and its potential implications for cancer and other diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kras KM et al (1999) Adipocyte development is dependent upon stem cell recruitment and proliferation of preadipocytes. Obes Res 7(5):491–497

    PubMed  CAS  Google Scholar 

  2. Sun K, Kusminski CM, Scherer PE (2011) Adipose tissue remodeling and obesity. J Clin Invest 121(6):2094–2101

    PubMed  CAS  Google Scholar 

  3. Ducharme NA, Bickel PE (2008) Lipid droplets in lipogenesis and lipolysis. Endocrinology 149(3):942–949

    PubMed  CAS  Google Scholar 

  4. Rosen ED, Spiegelman BM (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444(7121):847–853

    PubMed  CAS  Google Scholar 

  5. Wisse BE, Kim F, Schwartz MW (2007) Physiology. An integrative view of obesity. Science 318(5852):928–929

    PubMed  CAS  Google Scholar 

  6. Cowey S, Hardy RW (2006) The metabolic syndrome: a high-risk state for cancer? Am J Pathol 169(5):1505–1522

    PubMed  CAS  Google Scholar 

  7. Flegal KM et al (2007) Cause-specific excess deaths associated with underweight, overweight, and obesity. JAMA 298(17):2028–2037

    PubMed  CAS  Google Scholar 

  8. Sirin O, Kolonin MG (2012) Treatment of obesity as a potential complementary approach to cancer therapy. Drug Discov Today, Online ahead of print

    Google Scholar 

  9. Kant P, Hull MA (2011) Excess body weight and obesity—the link with gastrointestinal and hepatobiliary cancer. Nat Rev Gastroenterol Hepatol 8(4):224–238

    PubMed  CAS  Google Scholar 

  10. Roberts DL, Dive C, Renehan AG (2010) Biological mechanisms linking obesity and cancer risk: new perspectives. Annu Rev Med 61:301–316

    PubMed  CAS  Google Scholar 

  11. Calle EE, Kaaks R (2004) Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4(8):579–591

    PubMed  CAS  Google Scholar 

  12. Eheman C et al (2012) Annual report to the nation on the status of cancer, 1975–2008, featuring cancers associated with excess weight and lack of sufficient physical activity. Cancer 118(9):2338–2366

    PubMed  Google Scholar 

  13. Vona-Davis L, Howard-McNatt M, Rose DP (2007) Adiposity, type 2 diabetes and the metabolic syndrome in breast cancer. Obes Rev 8(5):395–408

    PubMed  CAS  Google Scholar 

  14. Hursting SD et al (2007) The obesity-cancer link: lessons learned from a fatless mouse. Cancer Res 67(6):2391–2393

    PubMed  CAS  Google Scholar 

  15. Zhang Y et al (2012) Stromal progenitor cells from endogenous adipose tissue contribute to pericytes and adipocytes that populate the tumor microenvironment. Cancer Res 72(20):5198–5208

    PubMed  CAS  Google Scholar 

  16. Pierce J, Natarajan L, Caan BJ (2007) Influence of a diet very high in vegetables, fruit, and fiber and low in fat on prognosis following treatment for breast cancer: the Women’s Healthy Eating and Living (WHEL) randomized trial. JAMA 298(3):289–298

    PubMed  CAS  Google Scholar 

  17. Ailhaud G, Grimaldi P, Negrel R (1992) Cellular and molecular aspects of adipose tissue development. Annu Rev Nutr 12:207–233

    PubMed  CAS  Google Scholar 

  18. Klein J et al (2006) Adipose tissue as source and target for novel therapies. Trends Endocrinol Metab 17(1):26–32

    PubMed  CAS  Google Scholar 

  19. Lafontan M (2005) Fat cells: afferent and efferent messages define new approaches to treat obesity. Annu Rev Pharmacol Toxicol 45:119–146

    PubMed  CAS  Google Scholar 

  20. Klaus S (2004) Adipose tissue as a regulator of energy balance. Curr Drug Targets 5(3):241–250

    PubMed  CAS  Google Scholar 

  21. Tam CS, Lecoultre V, Ravussin E (2012) Brown adipose tissue: mechanisms and potential therapeutic targets. Circulation 125(22):2782–2791

    PubMed  Google Scholar 

  22. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84(1):277–359

    PubMed  CAS  Google Scholar 

  23. Nedergaard J, Bengtsson T, Cannon B (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 293(2):444–452

    Google Scholar 

  24. Park J, Euhus DM, Scherer PE (2011) Paracrine and endocrine effects of adipose tissue on cancer development and progression. Endocr Rev 32(4):550–570

    PubMed  CAS  Google Scholar 

  25. Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89(6):2548–2556

    PubMed  CAS  Google Scholar 

  26. Paz-Filho G et al (2011) Associations between adipokines and obesity-related cancer. Front Biosci 16:1634–1650

    PubMed  CAS  Google Scholar 

  27. Trayhurn P, Wood IS (2004) Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr 92(3):347–355

    PubMed  CAS  Google Scholar 

  28. Khandekar MJ, Cohen P, Spiegelman BM (2011) Molecular mechanisms of cancer development in obesity. Nat Rev Cancer 11(12):886–895

    PubMed  CAS  Google Scholar 

  29. Hausman DB et al (2001) The biology of white adipocyte proliferation. Obes Rev 2(4):239–254

    PubMed  CAS  Google Scholar 

  30. Nishimura S et al (2007) Adipogenesis in obesity requires close interplay between differentiating adipocytes, stromal cells, and blood vessels. Diabetes 56(6):1517–1526

    PubMed  CAS  Google Scholar 

  31. Daquinag AC, Zhang Y, Kolonin MG (2011) Vascular targeting of adipose tissue as an anti-obesity approach. Trends Pharmacol Sci 32(5):300–307

    PubMed  CAS  Google Scholar 

  32. Cao Y (2007) Angiogenesis modulates adipogenesis and obesity. J Clin Invest 117(9):2362–2368

    PubMed  CAS  Google Scholar 

  33. Traktuev D et al (2008) A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 102(1):77–85

    PubMed  CAS  Google Scholar 

  34. Tang W et al (2008) White fat progenitor cells reside in the adipose vasculature. Science 322(5901):583–586

    PubMed  CAS  Google Scholar 

  35. Spalding KL et al (2008) Dynamics of fat cell turnover in humans. Nature 453(7196):783–787

    PubMed  CAS  Google Scholar 

  36. Gimble JM, Katz AJ, Bunnell BA (2007) Adipose-derived stem cells for regenerative ­medicine. Circ Res 100(9):1249–1260

    PubMed  CAS  Google Scholar 

  37. Daquinag AC et al (2011) An isoform of decorin is a resistin receptor on the surface of adipose progenitor cells. Cell Stem Cell 9(1):74–86

    PubMed  CAS  Google Scholar 

  38. Lee NK et al (2011) Identification of a novel peptide ligand targeting visceral adipose tissue via transdermal route by in vivo phage display. J Drug Target 19(9):805–813

    PubMed  CAS  Google Scholar 

  39. Folkman J (2006) Angiogenesis. Annu Rev Med 57:1–18

    PubMed  CAS  Google Scholar 

  40. Cao Y (2010) Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nat Rev Drug Discov 9(2):107–115

    PubMed  CAS  Google Scholar 

  41. Bertolini F et al (2006) The multifaceted circulating endothelial cell in cancer: towards marker and target identification. Nat Rev Cancer 6(11):835–845

    PubMed  CAS  Google Scholar 

  42. Tilki D et al (2009) Emerging biology of vascular wall progenitor cells in health and disease. Trends Mol Med 15(11):501–509

    PubMed  CAS  Google Scholar 

  43. Wels J et al (2008) Migratory neighbors and distant invaders: tumor-associated niche cells. Genes Dev 22(5):559–574

    PubMed  CAS  Google Scholar 

  44. Gupta RK et al (2012) Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells. Cell Metab 15(2):230–239

    PubMed  CAS  Google Scholar 

  45. Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: revisiting history, ­concepts, and assays. Cell Stem Cell 2(4):313–319

    PubMed  CAS  Google Scholar 

  46. Caplan AI, Correa D (2011) The MSC: an injury drugstore. Cell Stem Cell 9(1):11–15

    PubMed  CAS  Google Scholar 

  47. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276(5309):71–74

    PubMed  CAS  Google Scholar 

  48. Sera Y et al (2009) Hematopoietic stem cell origin of adipocytes. Exp Hematol 37(9):1108–1120

    PubMed  CAS  Google Scholar 

  49. Tomiyama K et al (2008) Characterization of transplanted green fluorescent protein+ bone marrow cells into adipose tissue. Stem Cells 26(2):330–338

    PubMed  Google Scholar 

  50. Koh YJ et al (2007) Bone marrow-derived circulating progenitor cells fail to transdifferentiate into adipocytes in adult adipose tissues in mice. J Clin Invest 117(12):3684–3695

    PubMed  CAS  Google Scholar 

  51. Rodeheffer MS, Birsoy K, Friedman JM (2008) Identification of white adipocyte progenitor cells in vivo. Cell 135(2):240–249

    PubMed  CAS  Google Scholar 

  52. Zeve D, Tang W, Graff J (2009) Fighting fat with fat: the expanding field of adipose stem cells. Cell Stem Cell 5(5):472–481

    PubMed  CAS  Google Scholar 

  53. Yancopoulos GD et al (2000) Vascular-specific growth factors and blood vessel formation. Nature 407(6801):242–248

    PubMed  CAS  Google Scholar 

  54. Kolonin MG et al (2012) Alternative origins of stroma in normal organs and disease. Stem Cell Res 8(2):312–323

    PubMed  CAS  Google Scholar 

  55. Zhang Y, Bellows CF, Kolonin MG (2010) Adipose tissue-derived progenitor cells and ­cancer. World J Stem Cells 2(5):103–113

    PubMed  Google Scholar 

  56. Grossmann ME et al (2010) Obesity and breast cancer: status of leptin and adiponectin in pathological processes. Cancer Metastasis Rev 29(4):641–653

    PubMed  CAS  Google Scholar 

  57. Zhang J et al (2012) Automated analysis of investigational near-infrared fluorescence ­lymphatic imaging in humans. Biomed Opt Express 3(7):1713–1723

    PubMed  Google Scholar 

  58. Zhang Y et al (2009) White adipose tissue cells are recruited by experimental tumors and promote cancer progression in mouse models. Cancer Res 69(12):5259–5266

    PubMed  CAS  Google Scholar 

  59. Klopp AH et al (2012) Omental adipose tissue-derived stromal cells promote vascularization and growth of endometrial tumors. Clin Cancer Res 18(3):771–782

    PubMed  CAS  Google Scholar 

  60. Kidd S et al (2012) Origins of the tumor microenvironment: quantitative assessment of adipose-derived and bone marrow-derived stroma. PLoS One 7(2):e30563

    PubMed  CAS  Google Scholar 

  61. Mancuso P et al (2011) Circulating perivascular progenitors: a target of PDGFR inhibition. Int J Cancer 129(6):1344–1350

    PubMed  CAS  Google Scholar 

  62. Bellows CF et al (2011) Circulation of progenitor cells in obese and lean colorectal cancer patients. Cancer Epidemiol Biomarkers Prev 20(11):2461–2468

    PubMed  CAS  Google Scholar 

  63. Bellows CF et al (2011) Influence of BMI on level of circulating progenitor cells. Obesity 19(8):1722–1726

    PubMed  Google Scholar 

  64. Bertolini F et al (2012) Adipose tissue cells, lipotransfer and cancer: a challenge for scientists, oncologists and surgeons. Biochim Biophys Acta 1826:209–214

    PubMed  CAS  Google Scholar 

  65. Lin G et al (2010) Effects of transplantation of adipose tissue-derived stem cells on prostate tumor. Prostate 70(10):1066–1073

    PubMed  Google Scholar 

  66. Martin-Padura I et al (2012) The white adipose tissue used in lipotransfer procedures is a rich reservoir of CD34+ progenitors able to promote cancer progression. Cancer Res 72(1):325–334

    PubMed  CAS  Google Scholar 

  67. Nieman KM et al (2011) Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 17(11):1498–1503

    PubMed  CAS  Google Scholar 

  68. Dirat B et al (2011) Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res 71(7):2455–2465

    PubMed  CAS  Google Scholar 

  69. Zyromski NJ et al (2009) Obesity potentiates the growth and dissemination of pancreatic cancer. Surgery 146(2):258–263

    PubMed  Google Scholar 

  70. Adams TD et al (2007) Long-term mortality after gastric bypass surgery. N Engl J Med 357(8):753–761

    PubMed  CAS  Google Scholar 

  71. Friedman JM (2009) Obesity: causes and control of excess body fat. Nature 459(7245):340–342

    PubMed  CAS  Google Scholar 

  72. Bray GA, Greenway FL (2007) Pharmacological treatment of the overweight patient. Pharmacol Rev 59(2):151–184

    PubMed  CAS  Google Scholar 

  73. Dolgin E (2012) A history of drugs on the weight list. Nat Med 18(6):843

    PubMed  CAS  Google Scholar 

  74. Tharakan G, Tan T, Bloom S (2010) Emerging therapies in the treatment of ‘diabesity’: beyond GLP-1. Trends Pharmacol Sci 32(1):8–15

    PubMed  Google Scholar 

  75. Nawrocki AR, Scherer PE (2005) Keynote review: the adipocyte as a drug discovery target. Drug Discov Today 10(18):1219–1230

    PubMed  CAS  Google Scholar 

  76. Cinti S (2009) Transdifferentiation properties of adipocytes in the adipose organ. Am J Physiol Endocrinol Metab 297(5):977–986

    Google Scholar 

  77. Wu J et al (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150(2):366–376

    PubMed  CAS  Google Scholar 

  78. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257

    PubMed  CAS  Google Scholar 

  79. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438(7070):967–974

    PubMed  CAS  Google Scholar 

  80. Hausman GJ, Richardson RL (2004) Adipose tissue angiogenesis. J Anim Sci 82(3):925–934

    PubMed  CAS  Google Scholar 

  81. Rupnick MA et al (2002) Adipose tissue mass can be regulated through the vasculature. Proc Natl Acad Sci U S A 99(16):10730–10735

    PubMed  CAS  Google Scholar 

  82. Christiaens V, Lijnen HR (2010) Angiogenesis and development of adipose tissue. Mol Cell Endocrinol 318(1–2):2–9

    PubMed  CAS  Google Scholar 

  83. Brakenhielm E, Cao Y (2008) Angiogenesis in adipose tissue. Methods Mol Biol 456:65–81

    PubMed  Google Scholar 

  84. Gealekman O et al (2008) Enhanced angiogenesis in obesity and in response to PPARgamma activators through adipocyte VEGF and ANGPTL4 production. Am J Physiol Endocrinol Metab 295(5):1056–1064

    Google Scholar 

  85. Fukumura D et al (2003) Paracrine regulation of angiogenesis and adipocyte differentiation during in vivo adipogenesis. Circ Res 93(9):88–97

    Google Scholar 

  86. Voros G et al (2005) Modulation of angiogenesis during adipose tissue development in murine models of obesity. Endocrinology 146(10):4545–4554

    PubMed  CAS  Google Scholar 

  87. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438(7070):932–936

    PubMed  CAS  Google Scholar 

  88. Sun K et al (2012) Dichotomous effects of VEGF-A on adipose tissue dysfunction. Proc Natl Acad Sci U S A 109(15):5874–5879

    PubMed  CAS  Google Scholar 

  89. Hagberg CE et al (2010) Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464(7290):917–921

    PubMed  CAS  Google Scholar 

  90. Lijnen HR et al (2006) Impaired adipose tissue development in mice with inactivation of placental growth factor function. Diabetes 55(10):2698–2704

    PubMed  CAS  Google Scholar 

  91. Tartare-Deckert S, Chavey C, Monthouel MN, Gautier N, Van Obberghen E (2001) The matricellular protein SPARC/osteonectin as a newly identified factor up-regulated in obesity. J Biol Chem 276:2231–22237

    Google Scholar 

  92. Bradshaw AD et al (2003) SPARC-null mice display abnormalities in the dermis characterized by decreased collagen fibril diameter and reduced tensile strength. J Invest Dermatol 120(6):949–955

    PubMed  CAS  Google Scholar 

  93. Kunduzova O et al (2008) Apelin/APJ signaling system: a potential link between adipose tissue and endothelial angiogenic processes. FASEB J 22(12):4146–4153

    PubMed  CAS  Google Scholar 

  94. Oike Y, Tabata M (2009) Angiopoietin-like proteins—potential therapeutic targets for metabolic syndrome and cardiovascular disease. Circ J 73(12):2192–2197

    PubMed  CAS  Google Scholar 

  95. Ledoux S et al (2008) Angiogenesis associated with visceral and subcutaneous adipose tissue in severe human obesity. Diabetes 57(12):3247–3257

    PubMed  CAS  Google Scholar 

  96. Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395(6704):763–770

    PubMed  CAS  Google Scholar 

  97. Sierra-Honigmann MR et al (1998) Biological action of leptin as an angiogenic factor. Science 281(5383):1683–1686

    PubMed  CAS  Google Scholar 

  98. Licinio J et al (2004) Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypogonadism, and behavior in leptin-deficient adults. Proc Natl Acad Sci U S A 101(13):4531–4536

    PubMed  CAS  Google Scholar 

  99. Delort L et al (2012) New insights into anticarcinogenic properties of adiponectin: a potential therapeutic approach in breast cancer? Vitam Horm 90:397–417

    PubMed  CAS  Google Scholar 

  100. Crandall DL, Hausman GJ, Kral JG (1997) A review of the microcirculation of adipose ­tissue: anatomic, metabolic, and angiogenic perspectives. Microcirculation 4(2):211–232

    PubMed  CAS  Google Scholar 

  101. Hoover-Plow J, Ellis J, Yuen L (2002) In vivo plasminogen deficiency reduces fat accumulation. Thromb Haemost 87(6):1011–1019

    PubMed  CAS  Google Scholar 

  102. Brakenhielm E et al (2004) Angiogenesis inhibitor, TNP-470, prevents diet-induced and genetic obesity in mice. Circ Res 94(12):1579–1588

    PubMed  CAS  Google Scholar 

  103. Tam J et al (2009) Blockade of VEGFR2 and not VEGFR1 can limit diet-induced fat tissue expansion: role of local versus bone marrow-derived endothelial cells. PLoS One 4(3):e4974

    PubMed  Google Scholar 

  104. Ejaz A et al (2009) Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. J Nutr 139(5):919–925

    PubMed  CAS  Google Scholar 

  105. Kim MY et al (2010) The anti-angiogenic herbal composition Ob-X inhibits adipose tissue growth in obese mice. Int J Obes (Lond) 34(5):820–830

    Google Scholar 

  106. Lijnen HR, Frederix L, Van Hoef B (2010) Fumagillin reduces adipose tissue formation in murine models of nutritionally induced obesity. Obesity (Silver Spring) 18(12):2241–2246

    CAS  Google Scholar 

  107. Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8(8):592–603

    PubMed  CAS  Google Scholar 

  108. Kappers MH et al (2009) Cardiovascular and renal toxicity during angiogenesis inhibition: clinical and mechanistic aspects. J Hypertens 27(12):2297–2309

    PubMed  CAS  Google Scholar 

  109. Schmidinger M, Bellmunt J (2010) Plethora of agents, plethora of targets, plethora of side effects in metastatic renal cell carcinoma. Cancer Treat Rev 36(5):416–424

    PubMed  CAS  Google Scholar 

  110. Yan M et al (2010) Chronic DLL4 blockade induces vascular neoplasms. Nature 463(7282):E6–E7

    PubMed  CAS  Google Scholar 

  111. Kim DH, Woods SC, Seeley RJ (2010) Peptide designed to elicit apoptosis in adipose tissue endothelium reduces food intake and body weight. Diabetes 59(4):907–915

    PubMed  CAS  Google Scholar 

  112. Woods SC, Seeley RJ (2000) Adiposity signals and the control of energy homeostasis. Nutrition 16(10):894–902

    PubMed  CAS  Google Scholar 

  113. Pajvani UB et al (2005) Fat apoptosis through targeted activation of caspase 8: a new mouse model of inducible and reversible lipoatrophy. Nat Med 11(7):797–803

    PubMed  CAS  Google Scholar 

  114. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6(4):389–395

    PubMed  CAS  Google Scholar 

  115. Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358(19):2039–2049

    PubMed  CAS  Google Scholar 

  116. Kolonin MG (2009) Tissue-specific targeting based on markers expressed outside endothelial cells. Adv Genet 67:61–102

    PubMed  CAS  Google Scholar 

  117. Kolonin MG et al (2004) Reversal of obesity by targeted ablation of adipose tissue. Nat Med 10(6):625–632

    PubMed  CAS  Google Scholar 

  118. Hossen MN et al (2010) Ligand-based targeted delivery of a peptide modified nanocarrier to endothelial cells in adipose tissue. J Control Release 147(2):261–268

    PubMed  CAS  Google Scholar 

  119. Barnhart KF et al (2011) A peptidomimetic targeting white fat causes weight loss and improved insulin resistance in obese monkeys. Sci Transl Med 3(108):108–112

    Google Scholar 

  120. Kim DH et al (2012) Rapid and weight-independent improvement of glucose tolerance induced by a peptide designed to elicit apoptosis in adipose tissue endothelium. Diabetes 61(9):2299–2310

    PubMed  CAS  Google Scholar 

  121. Staquicini FI et al (2011) Vascular ligand-receptor mapping by direct combinatorial selection in cancer patients. Proc Natl Acad Sci U S A 108(46):18637–18642

    PubMed  CAS  Google Scholar 

  122. Ling Q et al (2004) Annexin II regulates fibrin homeostasis and neoangiogenesis in vivo. J Clin Invest 113(1):38–48

    PubMed  CAS  Google Scholar 

  123. Liu D et al (2012) Mitochondrial dysfunction and adipogenic reduction by prohibitin silencing in 3T3-L1 cells. PLoS One 7(3):e34315

    PubMed  CAS  Google Scholar 

  124. Suga H et al (2010) Adipose tissue remodeling under ischemia: death of adipocytes and activation of stem/progenitor cells. Plast Reconstr Surg 126(6):1911–1923

    PubMed  CAS  Google Scholar 

  125. Nie J et al (2008) Combinatorial peptides identify α5β1 integrin as a receptor for the matricellular protein SPARC on adipose stromal cells. Stem Cells 26(10):2735–2745

    PubMed  CAS  Google Scholar 

  126. Rivera LB, Brekken RA (2011) SPARC promotes pericyte recruitment via inhibition of endoglin-dependent TGF-beta1 activity. J Cell Biol 193(7):1305–1319

    PubMed  CAS  Google Scholar 

  127. Guzman-Rojas L et al (2012) Cooperative effects of aminopeptidase N (CD13) expressed by nonmalignant and cancer cells within the tumor microenvironment. Proc Natl Acad Sci U S A 109(5):1637–1642

    PubMed  CAS  Google Scholar 

  128. Arap W et al (2002) Targeting the prostate for destruction through a vascular address. Proc Natl Acad Sci U S A 99(3):1527–1531

    PubMed  CAS  Google Scholar 

  129. Sergeeva A et al (2006) Display technologies: application for the discovery of drug and gene delivery agents. Adv Drug Deliv Rev 58(15):1622–1654

    PubMed  CAS  Google Scholar 

  130. Liu J et al (2012) Selection of aptamers specific for adipose tissue. PLoS One 7(5):e37789

    PubMed  CAS  Google Scholar 

  131. Freedland ES (2004) Role of a critical visceral adipose tissue threshold (CVATT) in metabolic syndrome: implications for controlling dietary carbohydrates: a review. Nutr Metab 1(1):12

    Google Scholar 

  132. Tran TT, Kahn CR (2010) Transplantation of adipose tissue and stem cells: role in metabolism and disease. Nat Rev Endocrinol 6(4):195–213

    PubMed  Google Scholar 

  133. Rutkowski JM, Davis KE, Scherer PE (2009) Mechanisms of obesity and related pathologies: the macro- and microcirculation of adipose tissue. FEBS J 276(20):5738–5746

    PubMed  CAS  Google Scholar 

  134. Paidisetty S, Blodgett TM (2009) Brown fat: atypical locations and appearances encountered in PET/CT. Am J Roentgenol 193(2):359–366

    Google Scholar 

  135. Xue Y et al (2009) Hypoxia-independent angiogenesis in adipose tissues during cold acclimation. Cell Metab 9(1):99–109

    PubMed  CAS  Google Scholar 

  136. Reitman ML et al (1999) Transgenic mice lacking white fat: models for understanding human lipoatrophic diabetes. Ann N Y Acad Sci 892:289–296

    PubMed  CAS  Google Scholar 

  137. Moitra J et al (1998) Life without white fat: a transgenic mouse. Genes Dev 12(20):3168–3181

    PubMed  CAS  Google Scholar 

  138. Lijnen HR (2008) Angiogenesis and obesity. Cardiovasc Res 78(2):286–293

    PubMed  CAS  Google Scholar 

  139. Crandall DL et al (2006) Modulation of adipose tissue development by pharmacological inhibition of PAI-1. Arterioscler Thromb Vasc Biol 26(10):2209–2215

    PubMed  CAS  Google Scholar 

  140. Demeulemeester D, Collen D, Lijnen HR (2005) Effect of matrix metalloproteinase ­inhibition on adipose tissue development. Biochem Biophys Res Commun 329:105–110

    PubMed  CAS  Google Scholar 

  141. Bourlier V et al (2005) Protease inhibitor treatments reveal specific involvement of matrix metalloproteinase-9 in human adipocyte differentiation. J Pharmacol Exp Ther 312(3):1272–1279

    PubMed  CAS  Google Scholar 

  142. Shin JH, Shin DW, Noh M (2009) Interleukin-17A inhibits adipocyte differentiation in human mesenchymal stem cells and regulates pro-inflammatory responses in adipocytes. Biochem Pharmacol 77:1835–1844

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail G. Kolonin Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Salameh, A., Kolonin, M.G. (2013). Vascular Targeting of Adipose Tissue. In: Dannenberg, A., Berger, N. (eds) Obesity, Inflammation and Cancer. Energy Balance and Cancer, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6819-6_15

Download citation

Publish with us

Policies and ethics