Obesity, Inflammation, and Prostate Cancer

  • Jorge Blando
  • Achinto Saha
  • Kaoru Kiguchi
  • John DiGiovanniEmail author
Part of the Energy Balance and Cancer book series (EBAC, volume 7)


Obesity and the associated metabolic syndrome produce a complex set of alterations both systemically and locally in tissues that support cancer development and progression. In prostate cancer (PCa), the weight of evidence suggests that obesity is primarily associated with more aggressive disease and increased risk of biochemical failure following prostatectomy or radiation treatment. Inflammation processes and inflammation-associated signaling pathways are upregulated in the obese state, and both human and mouse studies support an important role for inflammation in obesity-driven PCa progression. Inflammation signaling pathways along with other signaling pathways (e.g., growth factor signaling pathways) altered in the obese state represent promising targets for both lifestyle and pharmacologic interventions to prevent or control PCa progression.


Androgen Receptor Benign Prostate Hyperplasia White Adipose Tissue DU145 Cell Obese State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Achinto Saha is supported by a Cancer Prevention Research Institute of Texas postdoctoral fellowship award RP101501 from the State of Texas.


  1. 1.
    Flegal KM, Carroll MD, Kit BK, Ogden CL (2012) Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA 307:491–497PubMedCrossRefGoogle Scholar
  2. 2.
    Grassi G, Seravalle G, Scopelliti F, Dell’Oro R, Fattori L, Quarti-Trevano F et al (2010) Structural and functional alterations of subcutaneous small resistance arteries in severe human obesity. Obesity (Silver Spring) 18:92–98CrossRefGoogle Scholar
  3. 3.
    Gottschling-Zeller H, Birgel M, Scriba D, Blum WF, Hauner H (1999) Depot-specific release of leptin from subcutaneous and omental adipocytes in suspension culture: effect of tumor necrosis factor-alpha and transforming growth factor-beta1. Eur J Endocrinol 141:436–442PubMedCrossRefGoogle Scholar
  4. 4.
    Ford ES, Li C, Zhao G (2010) Prevalence and correlates of metabolic syndrome based on a harmonious definition among adults in the US. J Diabetes 2:180–193PubMedCrossRefGoogle Scholar
  5. 5.
    Hursting SD, Berger NA (2010) Energy balance, host-related factors, and cancer progression. J Clin Oncol 28:4058–4065PubMedCrossRefGoogle Scholar
  6. 6.
    Carter JC, Church FC (2009) Obesity and breast cancer: the roles of peroxisome proliferator-­activated receptor-gamma and plasminogen activator inhibitor-1. PPAR Res 2009:345320PubMedGoogle Scholar
  7. 7.
    Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX et al (2006) Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss. Arterioscler Thromb Vasc Biol 26:968–976PubMedCrossRefGoogle Scholar
  8. 8.
    Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348:1625–1638PubMedCrossRefGoogle Scholar
  9. 9.
    Stocks T, Borena W, Strohmaier S, Bjorge T, Manjer J, Engeland A et al (2010) Cohort profile: the metabolic syndrome and cancer project (Me-Can). Int J Epidemiol 39:660–667PubMedCrossRefGoogle Scholar
  10. 10.
    Aus G, Abbou CC, Bolla M, Heidenreich A, Schmid HP, van Poppel H et al (2005) EAU guidelines on prostate cancer. Eur Urol 48:546–551PubMedCrossRefGoogle Scholar
  11. 11.
    Stephenson RA, Stanford JL (1997) Population-based prostate cancer trends in the United States: patterns of change in the era of prostate-specific antigen. World J Urol 15:331–335PubMedCrossRefGoogle Scholar
  12. 12.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90PubMedCrossRefGoogle Scholar
  13. 13.
    Nomura AM (2001) Body size and prostate cancer. Epidemiol Rev 23:126–131PubMedCrossRefGoogle Scholar
  14. 14.
    Porter MP, Stanford JL (2005) Obesity and the risk of prostate cancer. Prostate 62:316–321PubMedCrossRefGoogle Scholar
  15. 15.
    Flavin R, Zadra G, Loda M (2011) Metabolic alterations and targeted therapies in prostate cancer. J Pathol 223:283–294PubMedCrossRefGoogle Scholar
  16. 16.
    Allott EH, Masko EM, Freedland SJ (2012) Obesity and prostate cancer: weighing the evidence. Eur Urol. 2012. pii:S0302–2838(12)01344-9. doi:10.1016/j.eururo.2012.11.013Google Scholar
  17. 17.
    Spitz MR, Strom SS, Yamamura Y, Troncoso P, Babaian RJ, Scardino PT et al (2000) Epidemiologic determinants of clinically relevant prostate cancer. Int J Cancer 89:259–264PubMedCrossRefGoogle Scholar
  18. 18.
    Giovannucci E, Rimm EB, Stampfer M, Colditz GA, Willett W (1997) Height, body weight and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 6(8):557–563Google Scholar
  19. 19.
    Graham S, Haughey B, Marshall J, Priore R, Byers T, Rzepka T et al (1983) Diet in the epidemiology of carcinoma of the prostate gland. J Natl Cancer Inst 70:687–692PubMedGoogle Scholar
  20. 20.
    Mettlin C, Selenskas S, Natarajan N, Huben R (1989) Beta-carotene and animal fats and their relationship to prostate cancer risk. A case–control study. Cancer 64:605–612PubMedCrossRefGoogle Scholar
  21. 21.
    Strom SS, Yamamura Y, Forman MR, Pettaway CA, Barrera SL, DiGiovanni J (2008) Saturated fat intake predicts biochemical failure after prostatectomy. Int J Cancer 122:2581–2585PubMedCrossRefGoogle Scholar
  22. 22.
    Kondo Y, Homma Y, Aso Y, Kakizoe T (1994) Promotional effect of two-generation exposure to a high-fat diet on prostate carcinogenesis in ACI/Seg rats. Cancer Res 54:6129–6132PubMedGoogle Scholar
  23. 23.
    Neuhouser ML, Till C, Kristal A, Goodman P, Hoque A, Platz EA et al (2010) Finasteride modifies the relation between serum C-peptide and prostate cancer risk: results from the Prostate Cancer Prevention Trial. Cancer Prev Res (Phila) 3:279–289CrossRefGoogle Scholar
  24. 24.
    Hsu IR, Kim SP, Kabir M, Bergman RN (2007) Metabolic syndrome, hyperinsulinemia, and cancer. Am J Clin Nutr 86:s867–s871PubMedGoogle Scholar
  25. 25.
    Zhou JR, Blackburn GL, Walker WA (2007) Symposium introduction: metabolic syndrome and the onset of cancer. Am J Clin Nutr 86:s817–s819PubMedGoogle Scholar
  26. 26.
    Laukkanen JA, Laaksonen DE, Niskanen L, Pukkala E, Hakkarainen A, Salonen JT (2004) Metabolic syndrome and the risk of prostate cancer in Finnish men: a population-based study. Cancer Epidemiol Biomarkers Prev 13:1646–1650PubMedGoogle Scholar
  27. 27.
    White MF, Kahn CR (1994) The insulin signaling system. J Biol Chem 269:1–4PubMedGoogle Scholar
  28. 28.
    Venkateswaran V, Haddad AQ, Fleshner NE, Fan R, Sugar LM, Nam R et al (2007) Association of diet-induced hyperinsulinemia with accelerated growth of prostate cancer (LNCaP) xenografts. J Natl Cancer Inst 99:1793–1800PubMedCrossRefGoogle Scholar
  29. 29.
    Kahn BB, Flier JS (2000) Obesity and insulin resistance. J Clin Invest 106:473–481PubMedCrossRefGoogle Scholar
  30. 30.
    Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N (2001) Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev 15:1406–1418PubMedCrossRefGoogle Scholar
  31. 31.
    Chan JM, Stampfer MJ, Ma J, Gann P, Gaziano JM, Pollak M et al (2002) Insulin-like growth factor-I (IGF-I) and IGF binding protein-3 as predictors of advanced-stage prostate cancer. J Natl Cancer Inst 94:1099–1106PubMedCrossRefGoogle Scholar
  32. 32.
    Burton AJ, Tilling KM, Holly JM, Hamdy FC, Rowlands MA, Donovan JL et al (2010) Metabolic imbalance and prostate cancer progression. Int J Mol Epidemiol Genet 1:248–271PubMedGoogle Scholar
  33. 33.
    Ma J, Li H, Giovannucci E, Mucci L, Qiu W, Nguyen PL et al (2008) Prediagnostic body-­mass index, plasma C-peptide concentration, and prostate cancer-specific mortality in men with prostate cancer: a long-term survival analysis. Lancet Oncol 9:1039–1047PubMedCrossRefGoogle Scholar
  34. 34.
    Pollak M (2008) Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 8:915–928PubMedCrossRefGoogle Scholar
  35. 35.
    Hellawell GO, Turner GD, Davies DR, Poulsom R, Brewster SF, Macaulay VM (2002) Expression of the type 1 insulin-like growth factor receptor is up-regulated in primary ­prostate cancer and commonly persists in metastatic disease. Cancer Res 62:2942–2950PubMedGoogle Scholar
  36. 36.
    Cox ME, Gleave ME, Zakikhani M, Bell RH, Piura E, Vickers E et al (2009) Insulin receptor expression by human prostate cancers. Prostate 69:33–40PubMedCrossRefGoogle Scholar
  37. 37.
    Renehan AG, Roberts DL, Dive C (2008) Obesity and cancer: pathophysiological and biological mechanisms. Arch Physiol Biochem 114:71–83PubMedCrossRefGoogle Scholar
  38. 38.
    Platz EA, Giovannucci E (2004) The epidemiology of sex steroid hormones and their signaling and metabolic pathways in the etiology of prostate cancer. J Steroid Biochem Mol Biol 92:237–253PubMedCrossRefGoogle Scholar
  39. 39.
    Hsing AW, Reichardt JK, Stanczyk FZ (2002) Hormones and prostate cancer: current perspectives and future directions. Prostate 52:213–235PubMedCrossRefGoogle Scholar
  40. 40.
    Gapstur SM, Kopp P, Gann PH, Chiu BC, Colangelo LA, Liu K (2007) Changes in BMI modulate age-associated changes in sex hormone binding globulin and total testosterone, but not bioavailable testosterone in young adult men: the CARDIA Male Hormone Study. Int J Obes (Lond) 31:685–691Google Scholar
  41. 41.
    Kupelian V, Page ST, Araujo AB, Travison TG, Bremner WJ, McKinlay JB (2006) Low sex hormone-binding globulin, total testosterone, and symptomatic androgen deficiency are associated with development of the metabolic syndrome in nonobese men. J Clin Endocrinol Metab 91:843–850PubMedCrossRefGoogle Scholar
  42. 42.
    Goldstein BJ (2003) Insulin resistance: from benign to type 2 diabetes mellitus. Rev Cardiovasc Med 4(suppl 6):S3–S10PubMedGoogle Scholar
  43. 43.
    Littman AJ, White E, Kristal AR (2007) Anthropometrics and prostate cancer risk. Am J Epidemiol 165:1271–1279PubMedCrossRefGoogle Scholar
  44. 44.
    Hsing AW, Sakoda LC, Chua S Jr (2007) Obesity, metabolic syndrome, and prostate cancer. Am J Clin Nutr 86:s843–s857PubMedGoogle Scholar
  45. 45.
    Tilg H, Moschen AR (2006) Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 6:772–783PubMedCrossRefGoogle Scholar
  46. 46.
    Baillargeon J, Rose DP (2006) Obesity, adipokines, and prostate cancer (review). Int J Oncol 28:737–745PubMedGoogle Scholar
  47. 47.
    Roberts DL, Dive C, Renehan AG (2010) Biological mechanisms linking obesity and cancer risk: new perspectives. Annu Rev Med 61:301–316PubMedCrossRefGoogle Scholar
  48. 48.
    Mistry T, Digby JE, Desai KM, Randeva HS (2007) Obesity and prostate cancer: a role for adipokines. Eur Urol 52:46–53PubMedCrossRefGoogle Scholar
  49. 49.
    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432PubMedCrossRefGoogle Scholar
  50. 50.
    Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR et al (1996) Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 334:292–295PubMedCrossRefGoogle Scholar
  51. 51.
    Chang S, Hursting SD, Contois JH, Strom SS, Yamamura Y, Babaian RJ et al (2001) Leptin and prostate cancer. Prostate 46:62–67PubMedCrossRefGoogle Scholar
  52. 52.
    Freedland SJ, Sokoll LJ, Platz EA, Mangold LA, Bruzek DJ, Mohr P et al (2005) Association between serum adiponectin, and pathological stage and grade in men undergoing radical prostatectomy. J Urol 174:1266–1270PubMedCrossRefGoogle Scholar
  53. 53.
    Hsing AW, Chua S Jr, Gao YT, Gentzschein E, Chang L, Deng J et al (2001) Prostate cancer risk and serum levels of insulin and leptin: a population-based study. J Natl Cancer Inst 93:783–789PubMedCrossRefGoogle Scholar
  54. 54.
    Kaaks R, Lukanova A, Rinaldi S, Biessy C, Soderberg S, Olsson T et al (2003) Interrelationships between plasma testosterone, SHBG, IGF-I, insulin and leptin in prostate cancer cases and controls. Eur J Cancer Prev 12:309–315PubMedCrossRefGoogle Scholar
  55. 55.
    Lagiou P, Signorello LB, Trichopoulos D, Tzonou A, Trichopoulou A, Mantzoros CS (1998) Leptin in relation to prostate cancer and benign prostatic hyperplasia. Int J Cancer 76:25–28PubMedCrossRefGoogle Scholar
  56. 56.
    Saglam K, Aydur E, Yilmaz M, Goktas S (2003) Leptin influences cellular differentiation and progression in prostate cancer. J Urol 169:1308–1311PubMedCrossRefGoogle Scholar
  57. 57.
    Stattin P, Kaaks R, Johansson R, Gislefoss R, Soderberg S, Alfthan H et al (2003) Plasma leptin is not associated with prostate cancer risk. Cancer Epidemiol Biomarkers Prev 12:474–475PubMedGoogle Scholar
  58. 58.
    Ribeiro R, Lopes C, Medeiros R (2004) Leptin and prostate: implications for cancer prevention—overview of genetics and molecular interactions. Eur J Cancer Prev 13:359–368PubMedCrossRefGoogle Scholar
  59. 59.
    Frankenberry KA, Somasundar P, McFadden DW, Vona-Davis LC (2004) Leptin induces cell migration and the expression of growth factors in human prostate cancer cells. Am J Surg 188:560–565PubMedCrossRefGoogle Scholar
  60. 60.
    Sierra-Honigmann MR, Nath AK, Murakami C, Garcia-Cardena G, Papapetropoulos A, Sessa WC et al (1998) Biological action of leptin as an angiogenic factor. Science 281:1683–1686PubMedCrossRefGoogle Scholar
  61. 61.
    Cirillo D, Rachiglio AM, la Montagna R, Giordano A, Normanno N (2008) Leptin signaling in breast cancer: an overview. J Cell Biochem 105:956–964PubMedCrossRefGoogle Scholar
  62. 62.
    Hoda MR, Popken G (2008) Mitogenic and anti-apoptotic actions of adipocyte-derived hormone leptin in prostate cancer cells. BJU Int 102:383–388PubMedCrossRefGoogle Scholar
  63. 63.
    Kadowaki T, Yamauchi T (2005) Adiponectin and adiponectin receptors. Endocr Rev 26:439–451PubMedCrossRefGoogle Scholar
  64. 64.
    Hursting SD, Digiovanni J, Dannenberg AJ, Azrad M, Leroith D, Demark-Wahnefried W et al (2012) Obesity, energy balance, and cancer: new opportunities for prevention. Cancer Prev Res (Phila) 5:1260–1272CrossRefGoogle Scholar
  65. 65.
    Byrne AM, Bouchier-Hayes DJ, Harmey JH (2005) Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J Cell Mol Med 9:777–794PubMedCrossRefGoogle Scholar
  66. 66.
    Liu Y, Tamimi RM, Collins LC, Schnitt SJ, Gilmore HL, Connolly JL et al (2011) The association between vascular endothelial growth factor expression in invasive breast cancer and survival varies with intrinsic subtypes and use of adjuvant systemic therapy: results from the Nurses’ Health Study. Breast Cancer Res Treat 129:175–184PubMedCrossRefGoogle Scholar
  67. 67.
    Cao Y (2007) Angiogenesis modulates adipogenesis and obesity. J Clin Invest 117:2362–2368PubMedCrossRefGoogle Scholar
  68. 68.
    Fong GH, Rossant J, Gertsenstein M, Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66–70PubMedCrossRefGoogle Scholar
  69. 69.
    Weidner N, Carroll PR, Flax J, Blumenfeld W, Folkman J (1993) Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol 143:401–409PubMedGoogle Scholar
  70. 70.
    Duque JL, Loughlin KR, Adam RM, Kantoff PW, Zurakowski D, Freeman MR (1999) Plasma levels of vascular endothelial growth factor are increased in patients with metastatic prostate cancer. Urology 54:523–527PubMedCrossRefGoogle Scholar
  71. 71.
    Woollard DJ, Opeskin K, Coso S, Wu D, Baldwin ME, Williams ED (2012) Differential expression of VEGF ligands and receptors in prostate cancer. Prostate. doi:10.1002/pros.22596Google Scholar
  72. 72.
    Freeman MR, Schneck FX, Gagnon ML, Corless C, Soker S, Niknejad K et al (1995) Peripheral blood T lymphocytes and lymphocytes infiltrating human cancers express vascular endothelial growth factor: a potential role for T cells in angiogenesis. Cancer Res 55:4140–4145PubMedGoogle Scholar
  73. 73.
    Ferrer FA, Miller LJ, Andrawis RI, Kurtzman SH, Albertsen PC, Laudone VP et al (1997) Vascular endothelial growth factor (VEGF) expression in human prostate cancer: in situ and in vitro expression of VEGF by human prostate cancer cells. J Urol 157:2329–2333PubMedCrossRefGoogle Scholar
  74. 74.
    George DJ, Regan MM, Oh WK, Tay MH, Manola J, Decalo N et al (2004) Radical prostatectomy lowers plasma vascular endothelial growth factor levels in patients with prostate cancer. Urology 63:327–332PubMedCrossRefGoogle Scholar
  75. 75.
    El-Gohary YM, Silverman JF, Olson PR, Liu YL, Cohen JK, Miller R et al (2007) Endoglin (CD105) and vascular endothelial growth factor as prognostic markers in prostatic adenocarcinoma. Am J Clin Pathol 127:572–579PubMedCrossRefGoogle Scholar
  76. 76.
    Stefanou D, Batistatou A, Kamina S, Arkoumani E, Papachristou DJ, Agnantis NJ (2004) Expression of vascular endothelial growth factor (VEGF) and association with microvessel density in benign prostatic hyperplasia and prostate cancer. In Vivo 18:155–160PubMedGoogle Scholar
  77. 77.
    Bok RA, Halabi S, Fei DT, Rodriquez CR, Hayes DF, Vogelzang NJ et al (2001) Vascular endothelial growth factor and basic fibroblast growth factor urine levels as predictors of outcome in hormone-refractory prostate cancer patients: a cancer and leukemia group B study. Cancer Res 61:2533–2536PubMedGoogle Scholar
  78. 78.
    George DJ, Halabi S, Shepard TF, Vogelzang NJ, Hayes DF, Small EJ et al (2001) Prognostic significance of plasma vascular endothelial growth factor levels in patients with hormone-­refractory prostate cancer treated on Cancer and Leukemia Group B 9480. Clin Cancer Res 7:1932–1936PubMedGoogle Scholar
  79. 79.
    Huss WJ, Hanrahan CF, Barrios RJ, Simons JW, Greenberg NM (2001) Angiogenesis and prostate cancer: identification of a molecular progression switch. Cancer Res 61:2736–2743PubMedGoogle Scholar
  80. 80.
    Turner K, Jones A (2000) Vascular endothelial growth factor in prostate cancer. Urology 56:183PubMedCrossRefGoogle Scholar
  81. 81.
    Jackson MW, Bentel JM, Tilley WD (1997) Vascular endothelial growth factor (VEGF) expression in prostate cancer and benign prostatic hyperplasia. J Urol 157:2323–2328PubMedCrossRefGoogle Scholar
  82. 82.
    Harper ME, Glynne-Jones E, Goddard L, Thurston VJ, Griffiths K (1996) Vascular endothelial growth factor (VEGF) expression in prostatic tumours and its relationship to neuroendocrine cells. Br J Cancer 74:910–916PubMedCrossRefGoogle Scholar
  83. 83.
    Kitagawa Y, Dai J, Zhang J, Keller JM, Nor J, Yao Z et al (2005) Vascular endothelial growth factor contributes to prostate cancer-mediated osteoblastic activity. Cancer Res 65:10921–10929PubMedCrossRefGoogle Scholar
  84. 84.
    Borgstrom P, Bourdon MA, Hillan KJ, Sriramarao P, Ferrara N (1998) Neutralizing anti-­vascular endothelial growth factor antibody completely inhibits angiogenesis and growth of human prostate carcinoma micro tumors in vivo. Prostate 35:1–10PubMedCrossRefGoogle Scholar
  85. 85.
    Iwaki T, Urano T, Umemura K (2012) PAI-1, progress in understanding the clinical problem and its aetiology. Br J Haematol 157:291–298PubMedCrossRefGoogle Scholar
  86. 86.
    Skurk T, Hauner H (2004) Obesity and impaired fibrinolysis: role of adipose production of plasminogen activator inhibitor-1. Int J Obes Relat Metab Disord 28:1357–1364PubMedCrossRefGoogle Scholar
  87. 87.
    Muldowney JA III, Chen Q, Blakemore DL, Vaughan DE (2012) Pentoxifylline lowers plasminogen activator inhibitor 1 levels in obese individuals: a pilot study. Angiology 63:429–434PubMedCrossRefGoogle Scholar
  88. 88.
    Festuccia C, Vincentini C, di Pasquale AB, Aceto G, Zazzeroni F, Miano L et al (1995) Plasminogen activator activities in short-term tissue cultures of benign prostatic hyperplasia and prostatic carcinoma. Oncol Res 7:131–138PubMedGoogle Scholar
  89. 89.
    Swiercz R, Keck RW, Skrzypczak-Jankun E, Selman SH, Jankun J (2001) Recombinant PAI-1 inhibits angiogenesis and reduces size of LNCaP prostate cancer xenografts in SCID mice. Oncol Rep 8:463–470PubMedGoogle Scholar
  90. 90.
    Sfanos KS, De Marzo AM (2012) Prostate cancer and inflammation: the evidence. Histopathology 60:199–215PubMedCrossRefGoogle Scholar
  91. 91.
    Gueron G, De Siervi A, Vazquez E (2012) Advanced prostate cancer: reinforcing the strings between inflammation and the metastatic behavior. Prostate Cancer Prostatic Dis 15:213–221PubMedCrossRefGoogle Scholar
  92. 92.
    Koul HK, Kumar B, Koul S, Deb AA, Hwa JS, Maroni P et al (2010) The role of inflammation and infection in prostate cancer: Importance in prevention, diagnosis and treatment. Drugs Today (Barc) 46:929–943CrossRefGoogle Scholar
  93. 93.
    Ouchi N, Parker JL, Lugus JJ, Walsh K (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11:85–97PubMedCrossRefGoogle Scholar
  94. 94.
    Azevedo A, Cunha V, Teixeira AL, Medeiros R (2011) IL-6/IL-6R as a potential key signaling pathway in prostate cancer development. World J Clin Oncol 2:384–396PubMedCrossRefGoogle Scholar
  95. 95.
    Michalaki V, Syrigos K, Charles P, Waxman J (2004) Serum levels of IL-6 and TNF-alpha correlate with clinicopathological features and patient survival in patients with prostate cancer. Br J Cancer 90:2312–2316PubMedGoogle Scholar
  96. 96.
    Nakashima J, Tachibana M, Horiguchi Y, Oya M, Ohigashi T, Asakura H et al (2000) Serum interleukin 6 as a prognostic factor in patients with prostate cancer. Clin Cancer Res 6:2702–2706PubMedGoogle Scholar
  97. 97.
    Knupfer H, Preiss R (2008) sIL-6R: more than an agonist? Immunol Cell Biol 86:87–91PubMedCrossRefGoogle Scholar
  98. 98.
    Akimoto S, Okumura A, Fuse H (1998) Relationship between serum levels of interleukin-6, tumor necrosis factor-alpha and bone turnover markers in prostate cancer patients. Endocr J 45:183–189PubMedCrossRefGoogle Scholar
  99. 99.
    Drachenberg DE, Elgamal AA, Rowbotham R, Peterson M, Murphy GP (1999) Circulating levels of interleukin-6 in patients with hormone refractory prostate cancer. Prostate 41:127–133PubMedCrossRefGoogle Scholar
  100. 100.
    Finley DS, Calvert VS, Inokuchi J, Lau A, Narula N, Petricoin EF et al (2009) Periprostatic adipose tissue as a modulator of prostate cancer aggressiveness. J Urol 182:1621–1627PubMedCrossRefGoogle Scholar
  101. 101.
    Akira S (1997) IL-6-regulated transcription factors. Int J Biochem Cell Biol 29:1401–1418PubMedCrossRefGoogle Scholar
  102. 102.
    Rose-John S (2001) Coordination of interleukin-6 biology by membrane bound and soluble receptors. Adv Exp Med Biol 495:145–151PubMedCrossRefGoogle Scholar
  103. 103.
    Lin DL, Whitney MC, Yao Z, Keller ET (2001) Interleukin-6 induces androgen responsiveness in prostate cancer cells through up-regulation of androgen receptor expression. Clin Cancer Res 7:1773–1781PubMedGoogle Scholar
  104. 104.
    Chen T, Wang LH, Farrar WL (2000) Interleukin 6 activates androgen receptor-mediated gene expression through a signal transducer and activator of transcription 3-dependent pathway in LNCaP prostate cancer cells. Cancer Res 60:2132–2135PubMedGoogle Scholar
  105. 105.
    Hobisch A, Eder IE, Putz T, Horninger W, Bartsch G, Klocker H et al (1998) Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res 58:4640–4645PubMedGoogle Scholar
  106. 106.
    Culig Z (2003) Role of the androgen receptor axis in prostate cancer. Urology 62:21–26PubMedCrossRefGoogle Scholar
  107. 107.
    Szlosarek PW, Balkwill FR (2003) Tumour necrosis factor alpha: a potential target for the therapy of solid tumours. Lancet Oncol 4:565–573PubMedCrossRefGoogle Scholar
  108. 108.
    van Horssen R, Ten Hagen TL, Eggermont AM (2006) TNF-alpha in cancer treatment: molecular insights, antitumor effects, and clinical utility. Oncologist 11:397–408PubMedCrossRefGoogle Scholar
  109. 109.
    Robinson SC, Coussens LM (2005) Soluble mediators of inflammation during tumor development. Adv Cancer Res 93:159–187PubMedCrossRefGoogle Scholar
  110. 110.
    Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71–78PubMedCrossRefGoogle Scholar
  111. 111.
    Nakashima J, Tachibana M, Ueno M, Miyajima A, Baba S, Murai M (1998) Association between tumor necrosis factor in serum and cachexia in patients with prostate cancer. Clin Cancer Res 4:1743–1748PubMedGoogle Scholar
  112. 112.
    Huerta-Yepez S, Vega M, Garban H, Bonavida B (2006) Involvement of the TNF-alpha autocrine-­paracrine loop, via NF-kappaB and YY1, in the regulation of tumor cell resistance to Fas-induced apoptosis. Clin Immunol 120:297–309PubMedCrossRefGoogle Scholar
  113. 113.
    Ohshima H, Tazawa H, Sylla BS, Sawa T (2005) Prevention of human cancer by modulation of chronic inflammatory processes. Mutat Res 591:110–122PubMedCrossRefGoogle Scholar
  114. 114.
    Mantovani A, Schioppa T, Porta C, Allavena P, Sica A (2006) Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev 25:315–322PubMedCrossRefGoogle Scholar
  115. 115.
    Tsatsanis C, Androulidaki A, Venihaki M, Margioris AN (2006) Signalling networks regulating cyclooxygenase-2. Int J Biochem Cell Biol 38:1654–1661PubMedCrossRefGoogle Scholar
  116. 116.
    Zha S, Yegnasubramanian V, Nelson WG, Isaacs WB, De Marzo AM (2004) Cyclooxygenases in cancer: progress and perspective. Cancer Lett 215:1–20PubMedCrossRefGoogle Scholar
  117. 117.
    Subbarayan V, Sabichi AL, Llansa N, Lippman SM, Menter DG (2001) Differential expression of cyclooxygenase-2 and its regulation by tumor necrosis factor-alpha in normal and malignant prostate cells. Cancer Res 61:2720–2726PubMedGoogle Scholar
  118. 118.
    Munoz-Espada AC, Watkins BA (2006) Cyanidin attenuates PGE2 production and cyclooxygenase-­2 expression in LNCaP human prostate cancer cells. J Nutr Biochem 17:589–596PubMedCrossRefGoogle Scholar
  119. 119.
    Wang W, Bergh A, Damber JE (2005) Cyclooxygenase-2 expression correlates with local chronic inflammation and tumor neovascularization in human prostate cancer. Clin Cancer Res 11:3250–3256PubMedCrossRefGoogle Scholar
  120. 120.
    Hensley PJ, Kyprianou N (2012) Modeling prostate cancer in mice: limitations and ­opportunities. J Androl 33:133–144PubMedCrossRefGoogle Scholar
  121. 121.
    Wang F (2011) Modeling human prostate cancer in genetically engineered mice. Prog Mol Biol Transl Sci 100:1–49PubMedCrossRefGoogle Scholar
  122. 122.
    Ahmad I, Sansom OJ, Leung HY (2008) Advances in mouse models of prostate cancer. Expert Rev Mol Med 10:e16PubMedCrossRefGoogle Scholar
  123. 123.
    Szymanska H (2007) [Genetically engineered mice: mouse models for cancer research]. Postepy Hig Med Dosw (Online) 61:639–645Google Scholar
  124. 124.
    Huffman DM, Johnson MS, Watts A, Elgavish A, Eltoum IA, Nagy TR (2007) Cancer progression in the transgenic adenocarcinoma of mouse prostate mouse is related to energy balance, body mass, and body composition, but not food intake. Cancer Res 67:417–424PubMedCrossRefGoogle Scholar
  125. 125.
    Llaverias G, Danilo C, Wang Y, Witkiewicz AK, Daumer K, Lisanti MP et al (2010) A Western-type diet accelerates tumor progression in an autochthonous mouse model of prostate cancer. Am J Pathol 177:3180–3191PubMedCrossRefGoogle Scholar
  126. 126.
    Blando J, Moore T, Hursting S, Jiang G, Saha A, Beltran L et al (2011) Dietary energy balance modulates prostate cancer progression in Hi-Myc mice. Cancer Prev Res (Phila) 4:2002–2014CrossRefGoogle Scholar
  127. 127.
    Kobayashi N, Barnard RJ, Said J, Hong-Gonzalez J, Corman DM, Ku M et al (2008) Effect of low-fat diet on development of prostate cancer and Akt phosphorylation in the Hi-Myc transgenic mouse model. Cancer Res 68:3066–3073PubMedCrossRefGoogle Scholar
  128. 128.
    Ribeiro AM, Andrade S, Pinho F, Monteiro JD, Costa M, Lopes C et al (2010) Prostate cancer cell proliferation and angiogenesis in different obese mice models. Int J Exp Pathol 91:374–386PubMedCrossRefGoogle Scholar
  129. 129.
    Zhang Y, Daquinag A, Traktuev DO, Amaya-Manzanares F, Simmons PJ, March KL et al (2009) White adipose tissue cells are recruited by experimental tumors and promote cancer progression in mouse models. Cancer Res 69:5259–5266PubMedCrossRefGoogle Scholar
  130. 130.
    Lamarre NS, Ruggieri MR Sr, Braverman AS, Gerstein MI, Mydlo JH (2007) Effect of obese and lean Zucker rat sera on human and rat prostate cancer cells: implications in obesity-­related prostate tumor biology. Urology 69:191–195PubMedCrossRefGoogle Scholar
  131. 131.
    Price RS, Cavazos DA, De Angel RE, Hursting SD, de Graffenried LA (2012) Obesity-­related systemic factors promote an invasive phenotype in prostate cancer cells. Prostate Cancer Prostatic Dis 15:135–143PubMedCrossRefGoogle Scholar
  132. 132.
    National Institutes of Health (1998) Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults—the evidence report. Obes Res 6(suppl 2):51S–209SGoogle Scholar
  133. 133.
    Vainio H, Kaaks R, Bianchini F (2002) Weight control and physical activity in cancer prevention: international evaluation of the evidence. Eur J Cancer Prev 11(suppl 2):S94–S100PubMedGoogle Scholar
  134. 134.
    Cerhan JR, Torner JC, Lynch CF, Rubenstein LM, Lemke JH, Cohen MB et al (1997) Association of smoking, body mass, and physical activity with risk of prostate cancer in the Iowa 65+ Rural Health Study (United States). Cancer Causes Control 8:229–238PubMedCrossRefGoogle Scholar
  135. 135.
    Hartman TJ, Albanes D, Rautalahti M, Tangrea JA, Virtamo J, Stolzenberg R et al (1998) Physical activity and prostate cancer in the Alpha-Tocopherol, Beta-Carotene (ATBC) Cancer Prevention Study (Finland). Cancer Causes Control 9:11–18PubMedCrossRefGoogle Scholar
  136. 136.
    Oliveria SA, Lee IM (1997) Is exercise beneficial in the prevention of prostate cancer? Sports Med 23:271–278PubMedCrossRefGoogle Scholar
  137. 137.
    Kelley DE, Goodpaster BH (1999) Effects of physical activity on insulin action and glucose tolerance in obesity. Med Sci Sports Exerc 31:S619–S623PubMedCrossRefGoogle Scholar
  138. 138.
    Chang S, Wu X, Yu H, Spitz MR (2002) Plasma concentrations of insulin-like growth factors among healthy adult men and postmenopausal women: associations with body composition, lifestyle, and reproductive factors. Cancer Epidemiol Biomarkers Prev 11:758–766PubMedGoogle Scholar
  139. 139.
    Kraemer RR, Chu H, Castracane VD (2002) Leptin and exercise. Exp Biol Med (Maywood) 227:701–708Google Scholar
  140. 140.
    Hulver MW, Berggren JR, Cortright RN, Dudek RW, Thompson RP, Pories WJ et al (2003) Skeletal muscle lipid metabolism with obesity. Am J Physiol Endocrinol Metab 284:E741–E747PubMedGoogle Scholar
  141. 141.
    Nindl BC, Kraemer WJ, Arciero PJ, Samatallee N, Leone CD, Mayo MF et al (2002) Leptin concentrations experience a delayed reduction after resistance exercise in men. Med Sci Sports Exerc 34:608–613PubMedCrossRefGoogle Scholar
  142. 142.
    Barnard RJ, Ngo TH, Leung PS, Aronson WJ, Golding LA (2003) A low-fat diet and/or strenuous exercise alters the IGF axis in vivo and reduces prostate tumor cell growth in vitro. Prostate 56:201–206PubMedCrossRefGoogle Scholar
  143. 143.
    Leung PS, Aronson WJ, Ngo TH, Golding LA, Barnard RJ (2004) Exercise alters the IGF axis in vivo and increases p53 protein in prostate tumor cells in vitro. J Appl Physiol 96:450–454PubMedCrossRefGoogle Scholar
  144. 144.
    Ornish D, Weidner G, Fair WR, Marlin R, Pettengill EB, Raisin CJ et al (2005) Intensive lifestyle changes may affect the progression of prostate cancer. J Urol 174:1065–1069; discussion 1069–1070Google Scholar
  145. 145.
    Ribaric S (2012) Diet and aging. Oxid Med Cell Longev 2012:741468PubMedCrossRefGoogle Scholar
  146. 146.
    Barger JL, Kayo T, Vann JM, Arias EB, Wang J, Hacker TA et al (2008) A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS One 3:e2264PubMedCrossRefGoogle Scholar
  147. 147.
    Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N et al (2008) Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 8:157–168PubMedCrossRefGoogle Scholar
  148. 148.
    Li G, Rivas P, Bedolla R, Thapa D, Reddick RL, Ghosh R et al (2012) Dietary resveratrol prevents development of high-grade prostatic intraepithelial neoplastic lesions: involvement of SIRT1/S6K axis. Cancer Prev Res (Phila) 6(1):27–39CrossRefGoogle Scholar
  149. 149.
    Kwon KH, Barve A, Yu S, Huang MT, Kong AN (2007) Cancer chemoprevention by ­phytochemicals: potential molecular targets, biomarkers and animal models. Acta Pharmacol Sin 28:1409–1421PubMedCrossRefGoogle Scholar
  150. 150.
    Adhami VM, Siddiqui IA, Ahmad N, Gupta S, Mukhtar H (2004) Oral consumption of green tea polyphenols inhibits insulin-like growth factor-I-induced signaling in an autochthonous mouse model of prostate cancer. Cancer Res 64:8715–8722PubMedCrossRefGoogle Scholar
  151. 151.
    Bowker SL, Majumdar SR, Veugelers P, Johnson JA (2006) Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin: response to Farooki and Schneider. Diabetes Care 29:1990–1991PubMedCrossRefGoogle Scholar
  152. 152.
    Wright JL, Stanford JL (2009) Metformin use and prostate cancer in Caucasian men: results from a population-based case–control study. Cancer Causes Control 20:1617–1622PubMedCrossRefGoogle Scholar
  153. 153.
    Zadra G, Priolo C, Patnaik A, Loda M (2010) New strategies in prostate cancer: targeting lipogenic pathways and the energy sensor AMPK. Clin Cancer Res 16:3322–3328PubMedCrossRefGoogle Scholar
  154. 154.
    Zakikhani M, Dowling RJ, Sonenberg N, Pollak MN (2008) The effects of adiponectin and metformin on prostate and colon neoplasia involve activation of AMP-activated protein kinase. Cancer Prev Res (Phila) 1:369–375CrossRefGoogle Scholar
  155. 155.
    Ben Sahra I, Laurent K, Loubat A, Giorgetti-Peraldi S, Colosetti P, Auberger P et al (2008) The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene 27:3576–3586PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jorge Blando
    • 1
  • Achinto Saha
    • 1
  • Kaoru Kiguchi
    • 1
  • John DiGiovanni
    • 1
    • 2
    • 3
    Email author
  1. 1.Division of Pharmacology and Toxicology, College of PharmacyThe University of Texas at AustinAustinUSA
  2. 2.Department of Nutritional Sciences, College of Natural SciencesThe University of Texas at AustinAustinUSA
  3. 3.Dell Pediatric Research InstituteThe University of Texas at AustinAustinUSA

Personalised recommendations