Hazardous Facility Location Models on Networks

Chapter
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 193)

Abstract

This chapter aims to be a comprehensive compilation of references and methods dealing with undesirable facility location on networks. In this sense, more than 90 papers have been briefly commented, along with several models on undesirable single facility location on networks with multiple criteria that have been analyzed and described.

Keywords

Nickel Transportation Turkey Hull Toll 

Notes

Acknowledgments

This work has been partially supported by Ministerio de Ciencia e Innovación, Spanish Government, research projects MTM2010-18591 and MTM2009-08830.

References

  1. Alumur S, Kara BY (2007) A new model for the hazardous waste location-routing problem. Comput Oper Res 34(5):1406–1423CrossRefGoogle Scholar
  2. Berman O, Drezner Z (2000) A note on the location of an obnoxious facility on a network. Euro J Oper Res 120(1):215–217CrossRefGoogle Scholar
  3. Berman O, Wang J (2004) Probabilistic location problems with discrete demand weights. Networks 44(1):47–57CrossRefGoogle Scholar
  4. Berman O, Wang J (2006) The 1-median and 1-antimedian problems with continuous probabilistic demand weights. INFOR 44(4):267–283Google Scholar
  5. Berman O, Wang Q (2007) Locating semi-obnoxious facilities with expropriation: minisum criterion. J Oper Res Soc 58:378–390CrossRefGoogle Scholar
  6. Berman O, Wang Q (2008) Locating a semi-obnoxious facility with expropriation. Comput Oper Res 35(2):392–403CrossRefGoogle Scholar
  7. Berman O, Drezner Z, Wesolowsky GO (1996) Minimum covering criterion for obnoxious facility location on a network. Networks 28(1):1–5CrossRefGoogle Scholar
  8. Berman O, Huang R (2008) The minimum weighted covering location problem with distance constraints. Comput Oper Res 35(2):356–372CrossRefGoogle Scholar
  9. Berman O, Verter V, Kara B (2007) Designing emergency response networks for hazardous materials transportation. Comput Oper Res 34(5):1374–1388CrossRefGoogle Scholar
  10. Burkard RE, Dollani H (2003) Center problems with pos/neg weights on tree. Euro J Oper Res 145(3):483–495CrossRefGoogle Scholar
  11. Burkard RE, Dollani H, Lin Y, Rote G (2001) The obnoxious center problem on a tree. SIAM J Discrete Math 14(4):498–509CrossRefGoogle Scholar
  12. Cáceres T, Mesa JA, Ortega FA (2007) Locating waste pipelines to minimize their impact on marine environment. Euro J Oper Res 179(3):1143–1159CrossRefGoogle Scholar
  13. Cappanera P (1999) “A survey on obnoxious facility location problems”, Technical Report 11, Dipartamento di Informatica, Università di PisaGoogle Scholar
  14. Cappanera P, Gallo G, Maffioli F (2003) Discrete facility location and routing of obnoxious activities. Discrete Appl Math 133(1–3):3–28CrossRefGoogle Scholar
  15. Carrizosa E, Conde E (2002) A fractional model for locating semi-desirable facilities on networks. Euro J Oper Res 136(1):67–80CrossRefGoogle Scholar
  16. Carrizosa E, Plastria F (1999) Location of semi-obnoxious facilities. Stud Locational Anal 12:1–27Google Scholar
  17. Chan Y (2005) Location, transport and land-use: modelling spatial-temporal information. Springer, New YorkGoogle Scholar
  18. Church RL, Garfinkel RS (1978) Locating an obnoxious facility on a network. Transport Sci 12(2):107–118CrossRefGoogle Scholar
  19. Colebrook M, Alonso S, Sicilia J (2005) “A new software tool to solve multicriteria facility location problems on networks” (invited session). In: Proceedings of the Triennial Conference of the International Federation of Operational Research Societies (IFORS 2005)Google Scholar
  20. Colebrook M, Gutiérrez J, Sicilia J (2005b) A new bound and an O(mn) algorithm for the undesirable 1-median problem (maxian) on networks. Comput Oper Res 32(2):309–325CrossRefGoogle Scholar
  21. Colebrook M, Gutiérrez J, Alonso S, Sicilia J (2002) A new algorithm for the undesirable 1-center problem on networks. J Oper Res Soc 53(12):1357–1366CrossRefGoogle Scholar
  22. Colebrook M (2003) Desirable and undesirable single facility location on networks with multiple criteria. Ph.D. dissertation, Universidad de La Laguna, Tenerife, SpainGoogle Scholar
  23. Colebrook M, Sicilia J (2006) An O(mn) algorithm for the anti-cent-dian problem. Appl Math Comput 183(1):350–364CrossRefGoogle Scholar
  24. Colebrook M, Sicilia J (2007) Undesirable facility location problems on multicriteria networks. Comput Oper Res 34(5):1491–1514CrossRefGoogle Scholar
  25. Current J, Min H, Schilling D (1990) Multiobjective analysis of facility location decisions. Eur J Oper Res 49(3):295–307CrossRefGoogle Scholar
  26. Daskin MS (1995) Network and discrete location: models, algorithms and applications. Wiley, New YorkCrossRefGoogle Scholar
  27. Domschke W, Drexl A (1985) Location and layout planning: an international bibliography. Springer, BerlinCrossRefGoogle Scholar
  28. Drezner Z (ed) (1995) Facility location: a survey of applications and methods. Springer, New YorkGoogle Scholar
  29. Drezner T, Drezner Z, Scott CH (2009) Location of a facility minimizing nuisance to or from a planar network. Comput Oper Res 36(1):135–148CrossRefGoogle Scholar
  30. Drezner Z, Hamacher HW (eds) (2004) Facility location: applications and theory. Springer, New YorkGoogle Scholar
  31. Drezner Z, Wesolowsky GO (1995) Obnoxious facility location in the interior of a planar network. J Regional Sci 35(4):675–688CrossRefGoogle Scholar
  32. Dyer ME (1984) Linear time algorithms for two- and three-variable linear programs. SIAM J Comput 13(1):31–45CrossRefGoogle Scholar
  33. Eiselt HA, Sandblom C-L (2004) Decision analysis, location models, and scheduling problems. Springer, New YorkGoogle Scholar
  34. Eiselt HA, Marianov V (2011) Foundations of Location Analysis. Springer, New YorkCrossRefGoogle Scholar
  35. Erkut E, Alp O (2007) Designing a road network for hazardous materials shipments. Comput Oper Res 34(5):1389–1405CrossRefGoogle Scholar
  36. Erkut E, Neuman S (1989) Analytical models for locating undesirable facilities. Euro J Oper Res 40(3):275–291CrossRefGoogle Scholar
  37. Erkut E, Neuman S (1992) A multiobjective model for locating undesirable facilities. Ann Oper Res 40:209–227CrossRefGoogle Scholar
  38. Erkut E, Verter V (1995) Hazardous materials logistics. In: Drezner Z (ed) Facility locations: a survey of applications and methods. Springer, New York, pp 467–506CrossRefGoogle Scholar
  39. Farahani RZ, Hekmatfar M (2009) Facility location: concepts, models, algorithms and case studies. Springer, New YorkGoogle Scholar
  40. Friedrich F (1929) Alfred Weber’s theory of the location of industries. Chicago University Press, Chicago, ILGoogle Scholar
  41. Giannikos I (1998) A multiobjective programming model for locating treatment sites and routing hazardous wastes. Euro J Oper Res 104(2):333–342CrossRefGoogle Scholar
  42. Hakimi SL (1964) Optimum locations of switching centers and the absolute centers and medians of a graph. Oper Res 12(3):450–459CrossRefGoogle Scholar
  43. Hale T (1998) Location science references. http://gator.dt.uh.edu/~halet/
  44. Hamacher HW, Labbé M, Nickel S, Skriver AJV (2002) Multicriteria semi-obnoxious network location problems (MSNLP) with sum and center objectives. Ann Oper Res 110(1–4):33–53CrossRefGoogle Scholar
  45. Hansen P, Labbé M, Thisse J-F (1991) From the median to the generalized center. Recherche Operationnelle/Oper Res 25(1):73–86Google Scholar
  46. Hershberger J (1989) Finding the upper envelope of n line segments in O(n log n) time. Inform Process Lett 33(4):169–174CrossRefGoogle Scholar
  47. Hosseini S, Esfahani AM (2009) Obnoxious Facility Location. In: Farahani RZ, Hekmatfar M (eds) Facility location: concepts, models, algorithms and case studies. Springer, New YorkGoogle Scholar
  48. Hokkanen J, Salminen P (1997) Locating a waste treatment facility by multicriteria analysis. J Multi-Crit Decis Anal 6(3):175–184CrossRefGoogle Scholar
  49. Jordan C (1869) Sur les assamblages de lignes. Zeitschrift Reine Angew Math 70:185–190CrossRefGoogle Scholar
  50. Kincaid RK, Berger RT (1994) The maxminsum problem on trees. Location Sci 2(1):1–9Google Scholar
  51. Krarup J, Pruzan PM (1990) Ingredients of locational analysis. In: Mirchandani PB, Francis RL (eds) Discrete location theory. Wiley, New York, pp 1–54Google Scholar
  52. Kuby MJ (1987) Programming models for facility dispersion: the p-dispersion and maxisum dispersion problems. Geogr Anal 19(4):315–329CrossRefGoogle Scholar
  53. Labbé M (1990) Location of an obnoxious facility on a network—a voting approach. Networks 20(2):197–207CrossRefGoogle Scholar
  54. List GF, Mirchandani PB (1991) An integrated network/planar multiobjective model for routing and siting for hazardous materials and wastes. Transport Sci 25(2):146–156CrossRefGoogle Scholar
  55. López-de-los-Mozos MC, Mesa JA (2001) The maximum absolute deviation measure in location problems on networks. Euro J Oper Res 135(1):184–194CrossRefGoogle Scholar
  56. Melachrinoudis E, Zhang FG (1999) An O(mn) algorithm for the 1-maxmin problem on a network. Comput Oper Res 26(9):849–869CrossRefGoogle Scholar
  57. Melachrinoudis E (2011) The location of undesirable facilities. In: Eiselt HA, Marianov V (eds) Foundations of location analysis. Springer, New YorkGoogle Scholar
  58. Melachrinoudis E, Min H, Wu X (1995) A multiobjective model for the dynamic location of landfills. Location Sci 3(3):143–166CrossRefGoogle Scholar
  59. Minieka E (1983) Anticenters and antimedians of a network. Networks 13(3):359–364CrossRefGoogle Scholar
  60. Mirchandani PB, Francis RL (eds) (1990) Discrete location theory. Wiley, New YorkGoogle Scholar
  61. Moon ID (1989) Maximin center of pendant vertices in a tree network. Transport Sci 23(3): 213–216CrossRefGoogle Scholar
  62. Moon ID, Chaudhry SS (1984) An analysis of network location problems with distance constraints. Manag Sci 30(3):290–307CrossRefGoogle Scholar
  63. Moreno-Pérez JA, Rodríguez-Martín I (1999) Anti-cent-dian on networks. Stud Locational Anal 12:29–39Google Scholar
  64. Murray AT, Church RL, Gerrard RA, Tsui WS (1998) Impact models for siting undesirable facilities. Papers Reg Sci 77(1):19–36Google Scholar
  65. Nickel S, Puerto J (2005) Location theory: a unified approach, Springer, BerlinCrossRefGoogle Scholar
  66. Pareto V (1896) Cours d’economie politique, F. Rouge, Lausanne 1Google Scholar
  67. Plastria F (1996) Optimal location of undesirable facilities: a selective overview. Belgian J Oper Res Stat Comput Sci 36(2–3):109–127Google Scholar
  68. Puerto J (ed) (1996) Lecturas en teoría de localización. Universidad de Sevilla, Secretariado de PublicacionesGoogle Scholar
  69. Rahman M, Kuby M (1995) A multiobjective model for locating solid waste transfer facilities using an empirical opposition function. INFOR 33(1):34–49Google Scholar
  70. Rakas J, Teodorović D, Kim T (2004) Multi-objective modeling for determining location of undesirable facilities. Transport Res Part D Transport Environ 9(2):125–138CrossRefGoogle Scholar
  71. Ratick SJ, White AL (1988) A risk-sharing model for locating noxious facilities. Environ Plann B 15(2):165–179CrossRefGoogle Scholar
  72. ReVelle CS, Cohon JL, Shobrys D (1981a) Multiple objective facility location. Sistemi Urbani 3:319–343Google Scholar
  73. ReVelle CS, Cohon JL, Shobrys D (1981b) Multiple objectives in facility location: a review. Lecture notes in economic and mathematical systems, organisations: multiple agents with multiple criteria, vol 190. Springer, pp 321–337Google Scholar
  74. Ross GT, Soland RM (1980) A multicriteria approach to the location of public facilities. Eur J Oper Res 4(5):307–321CrossRefGoogle Scholar
  75. Saameño JJ (1992) Localización multicriterio de centros peligrosos. Ph.D. thesis, Universidad de SevillaGoogle Scholar
  76. Salhi S, Welch SB, Cunninghame-Green RA (2000) An enhancement of an analytical approach: the case of the weighted maximin network location problem. Math Algorith 1(4):315–329Google Scholar
  77. Skriver AJV (2001) Multicriteria analysis on network and location problems. Ph.D. thesis, University of AarhusGoogle Scholar
  78. Skriver AJV, Andersen KA (2003) The bicriterion semi-obnoxious location (BSL) problem solved by an ε-approximation. Euro J Oper Res 146(3):517–528CrossRefGoogle Scholar
  79. Slater P (1975) Maximin facility location. J Res Natl Bur Stand 79B(3–4):107–115Google Scholar
  80. Steuer RE (1986) Multiple criteria optimization: theory, computation and application. Wiley, New YorkGoogle Scholar
  81. Stowers CL, Palekar US (1993) Location models with routing considerations for a single obnoxious facility. Transport Sci 27(4):350–362CrossRefGoogle Scholar
  82. Tamir A (1988) Improved complexity bounds for center location problems on networks by using dynamic data structures. SIAM J Discrete Math 1(3):377–396CrossRefGoogle Scholar
  83. Tamir A (1991) Obnoxious facility location on graphs. SIAM J Discrete Math 4(4):550–567CrossRefGoogle Scholar
  84. Tamir A (2001) “Comment on E. Melachrinoudis and F.G.-S. Zhang, An O(mn) algorithm for the 1-maximin problem on a network, Computers & Operations Research 26 (1999) 849–869, Comput Oper Res 28(2), 189Google Scholar
  85. Ting SS (1984) A linear-time algorithm for maxisum facility location on tree networks. Transport Sci 18(1):76–84CrossRefGoogle Scholar
  86. Tuzkaya G, Önüt S, Tuzkaya UR, Gülsün B (2008) An analytic network process approach for locating undesirable facilities: an example from Istanbul, Turkey. J Environ Manage 88(4): 970–983CrossRefGoogle Scholar
  87. Verter V, Erkut E (1995) Hazardous materials logistics: an annotated bibliography. In: Haurie A, Carraro C (eds) Operations Research and Environmental Management. Kluwer, Dordecht, pp 221–267Google Scholar
  88. Yamaguchi K (2011) Location of an undesirable facility on a network: a bargaining approach. Math Soc Sci 62(2):104–108CrossRefGoogle Scholar
  89. Zemel E (1984) An O(n) algorithm for the linear multiple choice knapsack and related problems. Informat Process Lett 18(3):123–128CrossRefGoogle Scholar
  90. Zhang FG (1996) Location on networks with multiple criteria. Ph.D. thesis, Northeastern University, Boston, MAGoogle Scholar
  91. Zhang FG, Melachrinoudis E (2001) The maximin-maxisum network location problem. Comput Optimiz Appll 19(2):209–234CrossRefGoogle Scholar
  92. Zhang J, Hodgson J, Erkut E (2000) Using GIS to assess the risks of hazardous materials transport in networks. Euro J Oper Res 121(2):316–329CrossRefGoogle Scholar
  93. Zhao J, Shuai B (2010) A new multi-objective model of location-allocation in emergency response network design for hazardous materials transportation. In: Proceedings of the 2010 IEEE International Conference on Emergency Management and Management Sciences (ICEMMS 2010), 246–249CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Depto. Estadística, Investigación Operativa y ComputaciónUniversidad de La LagunaTenerifeSpain

Personalised recommendations