Skip to main content

Abstract

Computer-aided design helps to enhance product development process in an indeed remarkable way, especially as it can also be combined with computer-­aided engineering and manufacturing resources. However, due to its initial applications in the automotive and aeronautic industries, the geometries typically attainable with these CAD resources can be described as soft and simple, as such simplicity is very well suited for production.

When designing novel biodevices adapted to biological systems or trying to mimic the complex characteristics of organs and biostructures, for promoting more adequate interactions, CAD resources are sometimes limited, as features, such as porosity, roughness and surface–volume ratio, among others, cannot be easily controlled with conventional design operations.

Fractal geometries, usually defined recursively or based on random processes, are more adequate for modelling and mimicking the complexity of biosystems and are starting to be used in biodevice design, as recent advances on manufacturing technology and also on materials science allow their automated production.

In this chapter, we focus on some relevant fractal models for better controlling the aforementioned features and describe an adequate design procedure for using such geometries in CAD resources. Some case studies linked to prostheses design and tissue engineering are also included, as an introduction to more complex devices included in forthcoming chapters about additive manufacturing technologies and micro-fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    On fractals with demonstrations.

  2. 2.

    2 For using some Matlab (The Mathworks Inc.) programmes for constructing fractal surfaces and fractal spheres, please have a look at the Annexes of the handbook.

References

  • Barthlott, W., Neinhuis, C.: Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8 (1997)

    Article  Google Scholar 

  • Berry, M.V., Lewis, Z.V.: On the Mandelbrot-Weierstrass function. Proc. Roy. Soc. Lond. A 370, 459–484 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • Coffey, W.T., Kalmykov, Y.P., Waldron, J.T.: The Langevin Equation: With Applications to Stochastical Problems in Physics, Chemistry and Electrical Engineering, 2nd edn. World Scientific Publishing, Singapore (2004)

    Google Scholar 

  • Díaz Lantada, A., Endrino, J.L., Mosquera, A.A., Lafont, P.: Design and rapid prototyping of DLC-coated fractal surfaces. J. Appl. Phys. Conf. Ser. 252(1), 012003 (2010)

    Google Scholar 

  • Díaz Lantada, A., Endrino, J.L., Sánchez Vaquero, V., Mosquera, A.A., Lafont Morgado, P., García-Ruíz, J.P.: Tissue engineering using novel rapid prototyped diamond-like carbon coated scaffolds. Plasma Process. Polymer. 9(1), 98–107 (2012). 4 Oct 2011, Online (doi:10.1002/ppap.201100094)

  • Díaz Lantada, A., Lafont Morgado, P., Echávarri Otero, J., Chacón Tanarro, E., De la Guerra Ochoa, E., Munoz-Guijosa, J.M., Muñoz Sanz, J.L.: Biomimetic computer-aided design and manufacturing of complex biological surfaces. In: Biodevices 2012 – International Conference on Biomedical Electronics and Devices. IEEE-EMBS, Vilamoura, Algarve (2012)

    Google Scholar 

  • Díaz Lantada, A., Lafont Morgado P., et al.: Substrato cuasibidimensional para crecimiento de células y tejidos y método de obtención del mismo. Spanish Patent and Trademark Office, Patent application number P201030957 (patent pending after positive state-of-the-art study) (2010)

    Google Scholar 

  • Díaz Lantada, A., Lafont Morgado P., et al.: Soporte tridimensional para producción artificial de órganos y otras estructuras del organismo humano y método de obtención del mismo. Spanish Patent and Trademark Office, Patent application number P201030956 (already granted) (2010)

    Google Scholar 

  • De la Guerra Ochoa, E., Del Sordo Carrancio, D., Echávarri Otero, J., Chacón Tanarro, E., Díaz Lantada, A., Lafont Morgado, P.: The influence of textured surfaces on the lubrication of artificial joint prostheses. In: Biodevices 2012 – International Conference on Biomedical Electronics and Devices. IEEE-EMBS, Vilamoura, Algarve (2012).

    Google Scholar 

  • Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, Chichester (2003)

    Book  MATH  Google Scholar 

  • Groenendijk, M.: Self cleaning Lotus leaf imitated in plastic by using a femtosecond laser. University of Twente, www.physorg.com (2007)

  • Guo, X., Liu, X., Zhang, B., Hu, G., Bai, J.: A combined fluorescence and microcomputer tomography system for small animal testing. IEEE Trans. Biomed. Eng. 58, 2876–2883 (2010)

    Google Scholar 

  • Kardar, M., Parisi, G., Zhang, Y.C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)

    Article  MATH  Google Scholar 

  • Lin, D.W., Johnson, S., Hunt, C.A.: Modeling liver physiology: combining fractals, imaging and animation. In: Proceedings of the 26th Annual International Conference of the IEEE-EMBS, pp. 3120–3123. San Francisco (2004)

    Google Scholar 

  • Longoni, S., Sartori, M.: Fractal geometry of nature (bone) may inspire medical devices shape. In: Nature Proceedings (in press), received 02 June 2010, posted 03 June 2010 (2010)

    Google Scholar 

  • Mandelbrot, B.B.: Weierstrass functions and kin. Ultraviolet and infrared catastrophe, In: The Fractal Geometry of Nature. W.H. Freeman and Company, New York (1983).

    Google Scholar 

  • Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10(4), 422–437 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  • Shi, H., Farag, A.A., Fahmi, R., Chen, D.: Validation of finite element models of liver tissue using micro-CT. IEEE Trans. Biomed. Eng. 55, 978–985 (2008)

    Article  Google Scholar 

  • Tsyganov, M.A., Kresteva, I.B., Aslanidi, G.V., Aslanidi, K.B., Deev, A.R., Ivanitsky, G.R.: The mechanism of fractal-like structure formation by bacterial populations. J. Biol. Phys. 25, 165–176 (2007)

    Article  Google Scholar 

  • Weierstrass, K.: Abhandlungen aus der Functionenlehre. Springer, Berlin (1886)

    MATH  Google Scholar 

Some Interesting Related Websites

On Euclidean and non-Euclidean geometries:

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Díaz Lantada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lantada, A.D., Gil, J.C. (2013). Fractal Geometry for Biomimetic Design of Biodevices. In: Lantada, A. (eds) Handbook on Advanced Design and Manufacturing Technologies for Biomedical Devices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-6789-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6789-2_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-6788-5

  • Online ISBN: 978-1-4614-6789-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics