Skip to main content

Nano-manufacturing Technologies for Biodevices: Interacting at a Molecular Scale

  • Chapter
  • First Online:
Handbook on Advanced Design and Manufacturing Technologies for Biomedical Devices

Abstract

Nanotechnology is the study of manipulating and interacting with matter on an atomic and molecular scale, and related research is connected to the development of novel materials and devices with at least some details including sizes from around units to a few hundreds of nanometres. Research is linked to many fields benefiting each other, as materials science, quantum physics, molecular biology, optics and micro/nano fabrication, among others, and main applications range from medicine and biology to industrial processes, electronics and energy.

The topics and directions of nanotechnology are so diverse, including aspects related to modelling, design, characterisation, novel synthesis and fabrication methods, and integration of components into final systems, among other fields, that trying to cover them in a chapter, or even in a whole handbook, would not be realistic.

Therefore, we focus on providing a brief introduction to nano-manufacturing technologies and on discussing main technologies currently being applied to promoting the performance of commercially available biodevices and in some cases of rapid prototypes.

In the biomedical field, nano-manufacturing processes are already being widely used for improving the mechanical performance, the corrosion resistance, the contact properties, the biocompatibility and biocidal behaviour and even the aesthetics of several implantable devices, as is also detailed further on.

Such manufacturing processes, mainly physical and chemical vapour deposition, thin-film solution-deposition processes and self-assembly and related processes, together with some typical applications, are summarised. Finally some details about present challenges, forthcoming technologies and expectations are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albella, J.M.: Preparación y caracterización de recubrimientos y láminas delgadas. Programa de Doctorado en Ciencias Físicas de la Universidad Autónoma de Madrid – Instituto de Ciencia de los Materiales de Madrid (CSIC), Material Docente. Madrid (2006)

    Google Scholar 

  • Albella, J.M., Gómez-Aleixandre, C., Ojeda, F., Martí, F.J.: Síntesis de materiales cerámicos mediante técnicas químicas en fase de vapor (CVD). Boletín de la Sociedad Española de Cerámica y Vídrio 42(1), 27–31 (2003)

    Article  Google Scholar 

  • Bar-Cohen, Y.: Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential and Challenges, 2nd edn. SPIE Press, Washington (2004)

    Book  Google Scholar 

  • Brinker, C.J., Scherer, G.W.: Sol–gel Science: The Physics and Chemistry of Sol–Gel Processing, 1st edn. Academic, Boston (1990)

    Google Scholar 

  • Bunshah, R.F.: Handbook of Deposition Technologies for Films and Coatings: Science, Technology and Applications. Materials Science and Process Technology Series, 2nd edn. Noyes, Park Ridge (1994)

    Google Scholar 

  • Decher, G., Hong, J.D.: Buildup of ultrathin multilayer films by a self-assembly process. II: consecutive adsorption of anionic and cationic bipolar amphiphiles and polyelectrolytes on charged surfaces. Int. J. Phys. Chem. 95(11), 1430–1434 (1991)

    Google Scholar 

  • Decher, G., Hong, J.D.. Schmitt, J.: Buildup of ultrathin multilayer films by a self-assembly process. III: consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films, International Conference on Langmuir-Blodgett Films (1992)

    Google Scholar 

  • Díaz Lantada, A.: Handbook on Active Materials for Medical Devices: Advances and Applications. PAN Stanford, Singapore (2012)

    Google Scholar 

  • Drexler, E.: Engineers of Creation: The Coming Era of Nanotechnology. Anchor Books (1986), Oxford University Press. Philadelphia, USA (1990)

    Google Scholar 

  • Drexler, E.: Molecular machinery and manufacture with applications to computation. Ph.D. thesis, MIT (1991)

    Google Scholar 

  • Glocker, D.A., Shah, S.I.: Handbook of Thin Film Process Technology. Institute of Physics Pub, Bristol (2002)

    Google Scholar 

  • Hench, L.L.: Sol–Gel Silica: Properties, Processing and Technology Transfer. William Andrew. New Jersey, USA (1998)

    Google Scholar 

  • Madou, M.: Fundamentals of Microfabrication: The Science of Miniaturization, pp. 62–63. CRC Press, Boca Raton (2002)

    Google Scholar 

  • Phillips, C.R.: Laser Ablation and Its Applications, Springer Series in Optical Sciences, 1st edn. Springer, USA (2006)

    Google Scholar 

  • Rimini, E.: Ion Implantation: Basics to Device Fabrication. Kluwer Academic, Boston (1995)

    Book  Google Scholar 

  • Saliterman, S.: Self-assembled Monolayers (SAMs). Fundamentals of BioMEMS and Medical Microdevices, pp. 94–96. SPIE Press, Bellingham (2006)

    Google Scholar 

  • Schwartz, M.: New Materials, Processes and Methods Technology. CRC Press, Taylor and Francis Group, Florida (2006)

    Google Scholar 

  • Smith, D.: Thin-Film Deposition: Principles and Practice. McGraw-Hill, New York (1995)

    Google Scholar 

13.7.1 Some Interesting Related Websites

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Díaz Lantada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lantada, A.D. (2013). Nano-manufacturing Technologies for Biodevices: Interacting at a Molecular Scale. In: Lantada, A. (eds) Handbook on Advanced Design and Manufacturing Technologies for Biomedical Devices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-6789-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6789-2_13

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-6788-5

  • Online ISBN: 978-1-4614-6789-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics