Skip to main content

Production Systems Engineering: Review and Recent Developments

  • Chapter
  • First Online:
Handbook of Stochastic Models and Analysis of Manufacturing System Operations

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 192))

  • 2722 Accesses

Abstract

Production Systems Engineering (PSE) is an emerging branch of Engineering intended to investigate fundamental laws that govern production systems and utilize them for the purposes of analysis, design, and continuous improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altiok, T. (1997). Performance analysis of manufacturing systems. New York: Springer.

    Book  Google Scholar 

  2. Banks, J., Carson, J. S., Nelson, B., & Nicol, D. M. (2010). Discrete-event system simulation (5th ed.). Upper Saddle River: Prentice Hall.

    Google Scholar 

  3. Beaumariage, T., & Kempf, K. (1994). The nature and origin of chaos in manufacturing systems. In IEEE/SEMI advanced semiconductor manufacturing conference (pp. 169–174).

    Google Scholar 

  4. Bonvik, A. M., Dallery, Y., & Gershwin, S. B. (2000). Approximate analysis of production systems operated by a conwip/finite buffer hybrid control policy. International Journal of Production Research, 38(13), 2845–2869.

    Article  Google Scholar 

  5. Buzacott, J. A., & Shanthikumar, J. G. (1993). Stochastic models of manufacturing systems. Englewood Cliff: Prentice Hall.

    Google Scholar 

  6. Chen, G., Zhang, L., Arinez, J., & Biller, S. (2013). Energy-efficient production systems through schedule-based operations. IEEE Transactions on Automation Science & Engineering, 10(1), 27–37.

    Article  Google Scholar 

  7. Dallery, Y., David, R., & Xie, X. L. (1988). An efficient algorithm for analysis of transfer lines with unreliable machines and finite buffers. IIE Transactions, 20(3), 280–283.

    Article  Google Scholar 

  8. Gershwin, S. B. (1987). An efficient decomposition method for the approximate evaluation of tandem queues with finite storage space and blocking. Operations Research, 35(2), 291–305.

    Article  Google Scholar 

  9. Gershwin, S. B. (1994). Manufacturing systems engineering. Englewood Cliff: Prentice Hall.

    Google Scholar 

  10. Gershwin, S. B., & Schor, J. (2000). Efficient algorithms for buffer space allocation. Annals of Operations Research, 93(1), 117–144.

    Article  Google Scholar 

  11. Goldratt, E. M., & Cox, J. (2004). The goal (3rd ed.). New York: North River Press.

    Google Scholar 

  12. Guckenheimer, J., & Holmes, P. (1983). Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. New York: Springer.

    Google Scholar 

  13. Guerrero, C. P. A., Wang, J., Li, J., Arinez, J., Biller, S., Huang, N., & Xiao, G. (2010). Production system design to reduce energy consumption: A case study in automotive paint shop. In Proceedings of international symposium on flexible automation, Tokyo, Japan.

    Google Scholar 

  14. Hillier, F. S., & Boling, R. W. (1966). The effect of some design factors on the efficiency of production lines with variable operation times. Journal of Industrial Engineering, 17(12), 651–658.

    Google Scholar 

  15. Jacobs, D., & Meerkov, S. M. (1995). A system-theoretic property of serial production lines - improvability. International Journal of Systems Science, 26(5), 755–785.

    Article  Google Scholar 

  16. Johnson, R. T., Fowler, J. W., & Mackulak, G. T. (2005). A discrete event simulation model simplification technique. In Proceedings of the 2005 winter simulation conference (pp. 2172–2176).

    Google Scholar 

  17. Kumar, P. R. (1993). Re-entrant lines. Queueing Systems, 13(1–3), 87–110.

    Article  Google Scholar 

  18. Kumar, P. R., & Seidman, T. I. (1990). Dynamic instabilities and stabilization methods in distributed real-time scheduling of manufacturing systems. IEEE Transactions on Automatic Control, 35(3), 289–298.

    Article  Google Scholar 

  19. Kumar, S., & Kumar, P. R. (1994). Performance bounds for queueing networks and scheduling policies. IEEE Transactions on Automatic Control, 39(8), 1600–1611.

    Article  Google Scholar 

  20. Lawrence, S. R., & Buss, A. H. (1995). Economic analysis of production bottlenecks. Mathematical Problems in Engineering, 1(4), 341–363.

    Article  Google Scholar 

  21. Li, J., & Meerkov, S. M. (2009). Production systems engineering. New York: Springer.

    Book  Google Scholar 

  22. Liu, L., & Yuan, X. M. (2001). Throughput, flow times, and service level in an unreliable assembly system. European Journal of Operational Research, 135(3), 602–615.

    Article  Google Scholar 

  23. MacPhee, I. M., & Mueller, L. J. (2007). Stability criteria for multi-class queuing networks with re-entrant lines. Methodology and Computing in Applied Probability, 9(3), 377–388.

    Article  Google Scholar 

  24. Meerkov, S. M., & Yan, C. B. (2012). Raw material release rate to ensure desired production lead time. Control Group Report CGR-2012-5, University of Michigan, Ann Arbor.

    Google Scholar 

  25. Muckstadt, J. A., & Sridhar, R. T. (1995). A comparison of alternative kanban control mechanisms. I. Background and structural results. IIE Transactions, 27(2), 140–150.

    Article  Google Scholar 

  26. Muth, E. J. (1973). The production rate of a series of work stations with variable service times. International Journal of Production Research, 11(2), 155–169.

    Article  Google Scholar 

  27. Muth, E. J. (1979). The reversibility property of production lines. Management Science, 25(2), 152–158.

    Article  Google Scholar 

  28. Papadopoulos, H. T., Heavy, C., & Browne, J. (1993). Queueing theory in manufacturing systems analysis and design. London: Chapman & Hill.

    Google Scholar 

  29. Rose, O. (1998). WIP evolution of a semiconductor factory after a bottleneck workcenter breakdown. In Proceedings of the 1998 winter simulation conference. IEEE Computer Society Press Los Alamitos, CA, USA, (pp. 997–1003).

    Google Scholar 

  30. Rose, O. (1999). Estimation of the cycle time distribution of a wafer fab by a simple simulation model. In Proceedings of the international conference on semiconductor manufacturing operational modeling and simulation (pp. 133–138).

    Google Scholar 

  31. Rose, O. (2007). Improving the accuracy of simple simulation models for complex production systems. In Proceedings of the 2007 INFORMS simulation society research workshop (pp.5–7).

    Google Scholar 

  32. Rudin, W. (2006). Real and complex analysis. New York: McGraw-Hill.

    Google Scholar 

  33. Spearman, M. L., Woodruff, D., & Hopp, W. J. (1990). Conwip: A pull alternative to kanban. International Journal of Production Research, 28(5), 879–894.

    Article  Google Scholar 

  34. Topan, E., & Avsar, Z. (2011). An approximation for kanban controlled assembly systems. Annals of Operations Research, 182(1), 133–162.

    Article  Google Scholar 

  35. Wang, J., Li, J., & Huang, N. (2009). Optimal scheduling to achieve energy reduction in automotive paint shops. In Proceedings of ASME manufacturing science and engineering conference (pp. 161–167), West Lafayette, IN.

    Google Scholar 

  36. Xie, X., & Li, J. (2012). An integrated productivity and energy consumption model in serial production lines. In Proceedings of IIE annual conference, Orlando, FL.

    Google Scholar 

  37. Yamashita, H., & Altiok, T. (1998). Buffer capacity allocation for a desired throughput in production lines. IIE Transactions, 30(10), 883–892.

    Google Scholar 

  38. Yamazaki, G., Kawashima, T., & Sakasegawa, H. (1985). Reversibility of tandem blocking queueing systems. Management Science, 31(1), 78–83.

    Article  Google Scholar 

  39. Yan, C. B., Hassoun, M., & Meerkov, S. M. (2012). Equilibria, stability, and transients in re-entrant lines under FBFS and LBFS dispatch and constant release. IEEE Transactions on Semiconductor Manufacturing, 25(2), 211–229.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingshan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, J., Meerkov, S.M., Zhang, L. (2013). Production Systems Engineering: Review and Recent Developments. In: Smith, J., Tan, B. (eds) Handbook of Stochastic Models and Analysis of Manufacturing System Operations. International Series in Operations Research & Management Science, vol 192. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6777-9_6

Download citation

Publish with us

Policies and ethics