Skip to main content

Therapeutic Applications Targeting the Cardiac Lymphatics in Heart Disease

  • Chapter
  • First Online:
  • 1150 Accesses

Abstract

The lymphatic system performs important roles in various essential body functions, such as fluid homeostasis, trafficking of immune cells, and intestinal lipid absorption. Despite its important roles, the lymphatic system of the heart has largely been overlooked due to its grossly invisible nature. The cardiac lymphatic system plays important roles in myocardial fluid homeostasis, controlling inflammation and infection. Because this system can contribute to various stages of myocardial infarction and inflammation, the study of this lymphatic system can elucidate the pathologic process of many cardiovascular diseases. Also, the role of the cardiac lymphatic system should be considered in the management of patients with cardiac diseases with increased risk of myocardial edema such as myopericarditis or heart failure. In this chapter, we discuss how the cardiac lymphatic system can contribute to the regulation of cardiovascular disease and provide potential therapeutic applications related to this important network of vessels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mehlhorn U, Geissler HJ, Laine GA, Allen SJ (2001) Role of the cardiac lymph system in myocardial fluid balance. Eur J Cardiothorac Surg 20:424–427

    Article  CAS  PubMed  Google Scholar 

  2. Shimada T, Morita T, Oya M, Kitamura H (1990) Morphological studies of the cardiac lymphatic system. Arch Histol Cytol 53(Suppl):115–126

    Article  PubMed  Google Scholar 

  3. Johnson RA, Blake TM (1966) Lymphatics of the heart. Circulation 33:137–142

    Article  CAS  PubMed  Google Scholar 

  4. Riquet M, Hidden G (1991) Lymphatic drainage of the left atrium and ventricle of the heart. Surg Radiol Anat 13:238–240

    Article  CAS  PubMed  Google Scholar 

  5. Riquet M, Hidden G (1991) Lymphatic drainage of the right atrium and ventricle of the heart. Surg Radiol Anat 13:235–237

    Article  CAS  PubMed  Google Scholar 

  6. Miller AJ, DeBoer A, Pick R, Van Pelt L, Palmer AS, Huber MP (1988) The lymphatic drainage of the pericardial space in the dog. Lymphology 21:227–233

    CAS  PubMed  Google Scholar 

  7. Leeds SE, Uhley HN, Meister RB, McCormack KR (1977) Lymphatic pathways and rate of absorption of 131I-albumin from pericardium of dogs. Lymphology 10:166–172

    CAS  PubMed  Google Scholar 

  8. Miller AJ, Pick R, Katz LN (1964) The importance of the lymphatics of the mammalian heart: experimental observations and some speculations. Circulation 29(Suppl):485–487

    Article  PubMed  Google Scholar 

  9. Sun SC, Lie JT (1977) Cardiac lymphatic obstruction: ultrastructure of acute-phase myocardial injury in dogs. Mayo Clin Proc 52:785–792

    CAS  PubMed  Google Scholar 

  10. Ludwig LL, Schertel ER, Pratt JW et al (1997) Impairment of left ventricular function by acute cardiac lymphatic obstruction. Cardiovasc Res 33:164–171

    Article  CAS  PubMed  Google Scholar 

  11. Wang YL, Wang XH, Liu YL, Kong XQ, Wang LX (2009) Cardiac lymphatic obstruction impairs left ventricular function and increases plasma endothelin-1 and angiotensin II in rabbits. Lymphology 42:182–187

    PubMed  Google Scholar 

  12. Ishikawa Y, Akishima-Fukasawa Y, Ito K et al (2007) Lymphangiogenesis in myocardial remodelling after infarction. Histopathology 51:345–353

    Article  CAS  PubMed  Google Scholar 

  13. Feola M, Glick G (1975) Cardiac lymph flow and composition in acute myocardial ischemia in dogs. Am J Physiol 229:44–48

    CAS  PubMed  Google Scholar 

  14. Park JH, Yoon JY, Ko SM et al (2011) Endothelial progenitor cell transplantation decreases lymphangiogenesis and adverse myocardial remodeling in a mouse model of acute myocardial infarction. Exp Mol Med 43:479–485

    Article  CAS  PubMed  Google Scholar 

  15. Miller AJ, Pick R, Johnson PJ (1971) The production of acute pericardial effusion: the effects of various degrees of interference with venous blood and lymph drainage from the heart muscle in the dog. Am J Cardiol 28:463–466

    Article  CAS  PubMed  Google Scholar 

  16. Miller AJ, Pick R, Kline IK, Katz LN (1964) The susceptibility of dogs with chronic impairment of cardiac lymph flow to staphylococcal vagular endocarditis. Circulation 30:417–424

    Article  CAS  PubMed  Google Scholar 

  17. Kondo T, Kitazawa R, Kawata E, Mori K, Kitazawa S (2009) Diffuse cardiac lymphatic involvement by metastatic neuroendocrine carcinoma mimicking hypertrophic cardiomyopathy: a case report. Cases J 2:9127

    Article  PubMed  Google Scholar 

  18. Uhley HN, Leeds SE, Sampson JJ, Friedman M (1969) The cardiac lymphatics in experimental chronic congestive heart failure. Proc Soc Exp Biol Med 131:379–381

    CAS  PubMed  Google Scholar 

  19. Kong XQ, Wang LX, Kong DG (2007) Cardiac lymphatic interruption is a major cause for allograft failure after cardiac transplantation. Lymphat Res Biol 5:45–47

    Article  PubMed  Google Scholar 

  20. Noto N, Okada T, Abe Y et al (2012) Characteristics of earlier atherosclerotic involvement in adolescent patients with Kawasaki disease and coronary artery lesions: significance of gray scale median on B-mode ultrasound. Atherosclerosis 222:106–109

    Article  CAS  PubMed  Google Scholar 

  21. He Y, Rajantie I, Ilmonen M et al (2004) Preexisting lymphatic endothelium but not endothelial progenitor cells are essential for tumor lymphangiogenesis and lymphatic metastasis. Cancer Res 64:3737–3740

    Article  CAS  PubMed  Google Scholar 

  22. Karpanen T, Egeblad M, Karkkainen MJ et al (2001) Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res 61:1786–1790

    CAS  PubMed  Google Scholar 

  23. Karkkainen MJ, Haiko P, Sainio K et al (2004) Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5:74–80

    Article  CAS  PubMed  Google Scholar 

  24. Nagy JA, Vasile E, Feng D et al (2002) Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J Exp Med 196:1497–1506

    Article  CAS  PubMed  Google Scholar 

  25. Cao R, Bjorndahl MA, Gallego MI et al (2006) Hepatocyte growth factor is a lymphangiogenic factor with an indirect mechanism of action. Blood 107:3531–3536

    Article  CAS  PubMed  Google Scholar 

  26. Salven P, Mustjoki S, Alitalo R, Alitalo K, Rafii S (2003) VEGFR-3 and CD133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells. Blood 101:168–172

    Article  CAS  PubMed  Google Scholar 

  27. Maruyama K, Ii M, Cursiefen C et al (2005) Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest 115:2363–2372

    Article  CAS  PubMed  Google Scholar 

  28. Religa P, Cao R, Bjorndahl M, Zhou Z, Zhu Z, Cao Y (2005) Presence of bone marrow-derived circulating progenitor endothelial cells in the newly formed lymphatic vessels. Blood 106:4184–4190

    Article  CAS  PubMed  Google Scholar 

  29. Kerjaschki D, Huttary N, Raab I et al (2006) Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat Med 12:230–234

    Article  CAS  PubMed  Google Scholar 

  30. Lee JY, Park C, Cho YP et al (2010) Podoplanin-expressing cells derived from bone marrow play a crucial role in postnatal lymphatic neovascularization. Circulation 122:1413–1425

    Article  CAS  PubMed  Google Scholar 

  31. Mehlhorn U, Davis KL, Burke EJ, Adams D, Laine GA, Allen SJ (1995) Impact of cardiopulmonary bypass and cardioplegic arrest on myocardial lymphatic function. Am J Physiol 268:H178–H183

    CAS  PubMed  Google Scholar 

  32. Ullal SR, Kluge TH, Gerbode F (1972) Functional and pathologic changes in the heart following chronic cardiac lymphatic obstruction. Surgery 71:328–334

    CAS  PubMed  Google Scholar 

  33. Gloviczki P, Solti F, Szlavy L, Jellinek H (1983) Ultrastructural and electrophysiologic changes of experimental acute cardiac lymphostasis. Lymphology 16:185–192

    CAS  PubMed  Google Scholar 

  34. Witte MH, Dumont AE, Clauss RH, Rader B, Levine N, Breed ES (1969) Lymph circulation in congestive heart failure: effect of external thoracic duct drainage. Circulation 39:723–733

    Article  CAS  PubMed  Google Scholar 

  35. Laine GA, Allen SJ (1991) Left ventricular myocardial edema. Lymph flow, interstitial fibrosis, and cardiac function. Circ Res 68:1713–1721

    Article  CAS  PubMed  Google Scholar 

  36. Szlavy L, Koster K, de Courten A, Hollenberg NK (1987) Early disappearance of lymphatics draining ischemic myocardium in the dog. Angiology 38:73–84

    Article  CAS  PubMed  Google Scholar 

  37. Santos AC, de Lima JJ, Botelho MF et al (1998) Cardiac lymphatic dynamics after ischemia and reperfusion–experimental model. Nucl Med Biol 25:685–688

    Article  CAS  PubMed  Google Scholar 

  38. Kholova I, Dragneva G, Cermakova P et al (2011) Lymphatic vasculature is increased in heart valves, ischaemic and inflamed hearts and in cholesterol-rich and calcified atherosclerotic lesions. Eur J Clin Invest 41:487–497

    Article  PubMed  Google Scholar 

  39. Miller AJ, Pick R, Katz LN (1960) Ventricular endomyocardial pathology produced by chronic cardiac lymphatic obstruction in the dog. Circ Res 8:941–947

    Article  CAS  PubMed  Google Scholar 

  40. Symbas PN, Schlant RC, Gravanis MB, Shepherd RL (1969) Pathologic and functional effects on the heart following interruption of the cardiac lymph drainage. J Thorac Cardiovasc Surg 57:577–584

    CAS  PubMed  Google Scholar 

  41. Weis M, von Scheidt W (1997) Cardiac allograft vasculopathy: a review. Circulation 96:2069–2077

    Article  CAS  PubMed  Google Scholar 

  42. Allen SJ, Geissler HJ, Davis KL et al (1997) Augmenting cardiac contractility hastens myocardial edema resolution after cardiopulmonary bypass and cardioplegic arrest. Anesth Analg 85:987–992

    CAS  PubMed  Google Scholar 

  43. Lopez B, Querejeta R, Gonzalez A, Sanchez E, Larman M, Diez J (2004) Effects of loop diuretics on myocardial fibrosis and collagen type I turnover in chronic heart failure. J Am Coll Cardiol 43:2028–2035

    Article  CAS  PubMed  Google Scholar 

  44. Cui Y (2010) The role of lymphatic vessels in the heart. Pathophysiology 17:307–314

    Article  PubMed  Google Scholar 

  45. Cui Y (2010) Impact of lymphatic vessels on the heart. Thorac Cardiovasc Surg 58:1–7

    Article  CAS  PubMed  Google Scholar 

  46. Szlavy L, Adams DF, Hollenberg NK, Abrams HL (1980) Cardiac lymph and lymphatics in normal and infarcted myocardium. Am Heart J 100:323–331

    Article  CAS  PubMed  Google Scholar 

  47. Cairns JA, Holder DA, Tanser P, Missirlis E (1982) Intravenous hyaluronidase therapy for myocardial infarction in man: double-blind trial to assess infarct size limitation. Circulation 65:764–771

    Article  CAS  PubMed  Google Scholar 

  48. Roberts R, Braunwald E, Muller JE et al (1988) Effect of hyaluronidase on mortality and morbidity in patients with early peaking of plasma creatine kinase MB and non-transmural ischaemia. Multicentre investigation for the limitation of infarct size (MILIS). Br Heart J 60:290–298

    Article  CAS  PubMed  Google Scholar 

  49. Saltissi S, Robinson PS, Coltart DJ, Webb-Peploe MM, Croft DN (1982) Effects of early administration of a highly purified hyaluronidase preparation (GL enzyme) on myocardial infarct size. Lancet 1:867–871

    Article  CAS  PubMed  Google Scholar 

  50. Repa I, Garnic JD, Hollenberg NK (1990) Myocardial infarction treated with two lymphagogues, calcium dobesilate (CLS 2210) and hyaluronidase: a coded, placebo-controlled animal study. J Cardiovasc Pharmacol 16:286–291

    Article  CAS  PubMed  Google Scholar 

  51. Szlavy L, Repa I, Lengyel I, Lamboy L (1990) Calcium dobesilate (CLS 2210) protects the myocardium in early acute myocardial infarction: a preliminary randomized, double-blind, placebo-controlled study of its effects on biochemical markers. J Cardiovasc Pharmacol 15:89–95

    Article  CAS  PubMed  Google Scholar 

  52. Johnsson C, Hallgren R, Elvin A, Gerdin B, Tufveson G (1999) Hyaluronidase ameliorates rejection-induced edema. Transpl Int 12:235–243

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Ok Jeong MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Park, JH., Jeong, JO. (2013). Therapeutic Applications Targeting the Cardiac Lymphatics in Heart Disease. In: Karunamuni, G. (eds) The Cardiac Lymphatic System. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6774-8_6

Download citation

Publish with us

Policies and ethics