Skip to main content

Tri-axis Accelerometer-Based Body Motion Detection System

  • Conference paper
  • First Online:
Intelligent Technologies and Engineering Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 234))

  • 2001 Accesses

Abstract

Tri-axis accelerometers are widely used to detect physical activity. Three-axis accelerometers are sensing devices that measure gravitational changes. In this chapter, a body motion index was derived using an axis accelerometer with additional signal filtering and feature extraction. Various body motion factors, motion rates, motion angles, and directions were examined during an experiment. Six participants were recruited for this study. A TD1A system (K&Y Labs) was employed; this wireless system comprised one electrocardiogram (ECG) and tri-axis acceleration sensor. Using a belt, an amplifier was fixed to each participant in the same relative position between the abdomen and chest for each experimental measurement. The participants were instructed to move in both directions seven times for varying durations and at differing motion angles. Features were extracted from the motion index series. Both the mean and maximum values of the motion index series were used. The results showed that specific posture change patterns had corresponding axis acceleration variations. The influence of the motion angle on the motion index value was considerably greater than that of the motion rate. Higher motion angles were achieved with higher motion index values. Generally, anterior-posterior swaying caused greater motions than left-to-right swaying under the same motion conditions for angle and rate. Therefore, the proposed motion classification algorithm combined with a tri-axis accelerometer has significant potential for motion detection. However, the use of accelerometers has a number of limitations. In the future, a multi-sensor system will be employed to detect body movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farahmand F, Khadivi K, Rodrigues JJP (2009) Detecting intra-fraction motion in patients undergoing radiation treatment using a low-cost wireless accelerometer. Sensors 9:6715–6729

    Article  Google Scholar 

  2. Betker AL, Moussavi ZM, Szturm T (2008) Ambulatory center of mass prediction using body accelerations and center of foot pressure. IEEE Trans Biomed Eng 55:2491–2498

    Article  Google Scholar 

  3. Bouten CV, Koekkoek KT, Verduin M, Kodde R, Janssen JD (1997) A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Trans Biomed Eng 44:136–147

    Article  Google Scholar 

  4. Chang KM, Liu SH (2011) Wireless portable electrocardiogram and a tri-axis accelerometer implementation and application on sleep activity monitoring. Telemed J e-Health 17:177–184

    Article  Google Scholar 

  5. van Hees VT, Renstrom F, Wright A, Gradmark A, Catt M, Chen KY, Lof M, Bluck L, Pomeroy J, Wareham NJ, Ekelund U, Brage S, Franks PW (2011) Estimation of daily energy expenditure in pregnant and non-pregnant women using a wrist-worn tri-axial accelerometer. PLoS One 6:e22922

    Article  Google Scholar 

Download references

Acknowledgments

This study was partially supported by the National Science Council, Taiwan, under grant number NSC 101-2221-E-468-008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang-Ming Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Chang, KM., Chen, SH., Huang, CL. (2013). Tri-axis Accelerometer-Based Body Motion Detection System. In: Juang, J., Huang, YC. (eds) Intelligent Technologies and Engineering Systems. Lecture Notes in Electrical Engineering, vol 234. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6747-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6747-2_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6746-5

  • Online ISBN: 978-1-4614-6747-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics