Skip to main content

The Evolutionary Origin of Animals and Fungi

  • Chapter
  • First Online:
Evolution from the Galapagos

Abstract

Animals and fungi make up the eukaryotic supergroup, Opisthokonta, along with a number of unicellular or “protistan” lineages. We now know that some of these protists are specifically allied with animals and others with fungi, making up the earliest branches of the eukaryotic superkingdoms that we now know as Holozoa and Holomycota. The existence of these early diverging, single-celled animal and fungal sister taxa also confirms, among other things, that multicellularity arose independently in animals and fungi. The opisthokont protists are vital keys to discover the common heritage of animals and fungi and to establish the baseline from which their unique and striking complexity arose. Therefore, there is a lot of current interest in understanding what these organisms are and how they are related to each other and the major groups of multicellular organisms. The holozoan and holomycotan protists are also important links in defining the relationship of opisthokonts to the rest of eukaryotes. In this chapter, we describe all the major currently known groups of opisthokont protist, what their distinguishing features are, and what are our current ideas as to how they are related to each other. Special attention is paid to the choanoflagellates as the most morphologically complex, most diverse, free-living group of opisthokont protists and the sister group to Metazoa. In order to understand early evolutionary groups, it is also important to have a closely related outgroup. Therefore, we will also overview the Dictyostelia, the only multicellular members of Amoebozoa, currently the closest known sister group to opisthokonts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adl SM, Simpson AG, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup O, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MF (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451

    Article  Google Scholar 

  • Ahluwalia KBN, Maheshwari N, Deka RC (1997) Rhinosporidiosis: a study that resolves etiologic controversies. Am J Rhinol 11:479–483

    Article  Google Scholar 

  • Alvarez-Curto E, Rozen DE, Ritchie AV, Fouquet C, Baldauf SL, Schaap P (2007) Evolutionary origin of cAMP-based chemoattraction in the social amoebae. Proc Natl Acad Sci U S A 102:6385–6390

    Article  Google Scholar 

  • Baker GC, Beebee TJ, Ragan MA (1999) Prototheca richardsi, a pathogen of anuran larvae, is related to a clade of protistan parasites near the animal-fungal divergence. Microbiology 145:1777–1784

    Article  Google Scholar 

  • Baldauf SL (2003) The deep roots of eukaryotes. Science 300:1703–1706

    Google Scholar 

  • Baldauf SL, Doolittle WF (1997) Origin and evolution of the slime molds (Mycetozoa). Proc Natl Acad Sci U S A 94:12007–12012

    Article  Google Scholar 

  • Baldauf SL, Palmer JD (1993) Animals and fungi are each other’s closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci U S A 90:11558–11562

    Article  Google Scholar 

  • Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF (2000) A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290:972–977

    Article  Google Scholar 

  • Barrantes I, Glockner G, Meyer S, Marwan W (2010) Transcriptomic changes arising during light-induced sporulation in Physarum polycephalum. BMC Genomics 11:115

    Article  Google Scholar 

  • Barth C, Le P, Fisher PR (2007) Mitochondrial biology and disease in Dictyostelium. Int Rev Cytol 263:207–252

    Article  Google Scholar 

  • Bass D, Howe A, Brown N, Barton H, Demidova M, Michelle H, Li L, Sanders H, Watkinson SC, Willcock S, Richards TA (2007) Yeast forms dominate fungal diversity in the deep oceans. Proc Biol Sci 274:3069–3077

    Article  Google Scholar 

  • Benny GL, O’Donnell K (2000) Amoebidium parasiticum is a protozoan, not a Trichomycete. Mycologica 92:1133–1137

    Article  Google Scholar 

  • Bergsten J (2005) A review of long-branch attraction. Cladistics 21(2):163–193

    Article  Google Scholar 

  • Berney C, Pawlowski J (2006) A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record. Proc Biol Sci 273:1867–1872

    Article  Google Scholar 

  • Blackwell M, Hibbett DS, Taylor JW, Spatafora JW (2006) Research Coordination Networks: a phylogeny for kingdom Fungi (Deep Hypha). Mycologia 98:829–837

    Article  Google Scholar 

  • Boenigk J, Arndt H (2000) Comparative studies on the feeding behavior of two heterotrophic nanoflagellates: the filter-feeding choanoflagellate Monosiga ovata and the raptorial-feeding kinetoplastid Rhynchomonas nasuta. Aquat Microb Ecol 22:243–249

    Article  Google Scholar 

  • Bonfante P, Genre A (2008) Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. Trends Plant Sci 13:492–498

    Article  Google Scholar 

  • Bonner JT (2003) On the origin of differentiation. J. Biosci. 28: 523–528

    Google Scholar 

  • Bourlat SJ, Nielsen C, Economou AD, Telford MJ (2008) Testing the new animal phylogeny: a phylum level molecular analysis of the animal kingdom. Mol Phylogenet Evol 49:23–31

    Article  Google Scholar 

  • Bourrelly P (1968) Les algues d’eau douce. Tome II: Les algues jaunes et brunes. Boubée et Cie, Paris

    Google Scholar 

  • Bozarth RF (1972) Mycoviruses: a new dimension in microbiology. Environ Health Perspect 2:23–39

    Article  Google Scholar 

  • Brown MW, Spiegel FW, Silberman JD (2009) Phylogeny of the “forgotten” cellular slime mold, Fonticula alba, reveals a key evolutionary branch within Opisthokonta. Mol Biol Evol 26:2699–2709

    Article  Google Scholar 

  • Brown MW, Silberman JD, Spiegel FW (2010) A morphologically simple species of Acrasis (Heterolobosea, Excavata), Acrasis helenhemmesae n. sp. J Eukaryot Microbiol 57:346–353

    Google Scholar 

  • Brown MW, Kolisko M, Silberman JD, Roger AJ (2012) Aggregative multicellularity evolved independently in the eukaryotic supergroup Rhizaria. Curr Biol 22:1123–1127

    Google Scholar 

  • Burger G, Forget L, Zhu Y, Gray MW, Lang BF (2003) Unique mitochondrial genome architecture in unicellular relatives of animals. Proc Natl Acad Sci U S A 100:892–897

    Article  Google Scholar 

  • Burki F, Shalchian-Tabrizi K, Minge M, Skjaeveland A, Nikolaev SI, Jakobsen KS, Pawlowski J (2007) Phylogenomics reshuffles the eukaryotic supergroups. PLoS One 2(8):e790

    Google Scholar 

  • Burki F, Shalchian-Tabrizi K, Pawlowski J (2008) Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes. Biol Lett 4:366–369

    Article  Google Scholar 

  • Buss KW (1987) The evolution of individuality. Princeton University Press, Princeton, p 203

    Google Scholar 

  • Cafaro MJ (2005) Eccrinales (Trichomycetes) are not fungi, but a clade of protists at the early divergence of animals and fungi. Mol Phylogenet Evol 35:21–34

    Article  Google Scholar 

  • Cann JP (1986) The feeding behavior and structure of Nuclearia delicatula (Filosea: Aconchulinida). J Eukaryot Microbiol 33:392–396

    Article  Google Scholar 

  • Canning EU, Curry A (2004) Further observations on the ultrastructure of Cystosporogenes operophterae (Canning, 1960) (phylum Microsporidia) parasitic in Operophtera brumata L. (Lepidoptera, Geometridae). J Invertebr Pathol 87:1–7

    Article  Google Scholar 

  • Cappuccinelli P, Ashworth JM (1977) Development and differentiation in the cellular slime moulds. Elsevier/North-Holland Biomedical Press, Amsterdam

    Google Scholar 

  • Carr M, Leadbeater BS, Hassan R, Nelson M, Baldauf SL (2009) Molecular phylogeny of choanoflagellates, the sister group to Metazoa. Proc Natl Acad Sci U S A 105:16641–16646

    Article  Google Scholar 

  • Cavalier-Smith T (1987) The origin of fungi and pseudofungi. In: Rayner ADM, Brasier CM, Moore D (eds) Evolutionary biology of the fungi. Cambridge University Press, Cambridge, pp 339–353

    Google Scholar 

  • Cavalier-Smith T (1989) Molecular phylogeny. Archaebacteria and Archezoa. Nature 339:100–101

    Google Scholar 

  • Cavalier-Smith T (1998) A revised six kingdom system of life. Biol Rev Camb Philos Soc 73:203–266

    Article  Google Scholar 

  • Cavalier-Smith T, Allsopp MTEP (1996) Corallochytrium, an enigmatic non-flagellate protozoan related to choanoflagellates. Eur J Protistol 32: 306–310

    Article  Google Scholar 

  • Cavalier-Smith T, Chao EEY (2003) Phylogeny of Choanozoa, Apusozoa, and other protozoa and early eukaryotic megaevolution. J Mol Evol 56:540–563

    Article  Google Scholar 

  • Cavalier-Smith T, Chao EE (2010) Phylogeny and evolution of Apusomonadida (Protozoa: Apusozoa): new genera and species. Protist 161:549–576

    Article  Google Scholar 

  • Cavalier-Smith T, Chao EEY, Oates B (2004) Molecular phylogeny of Amoebozoa and the evolutionary significance of the unikont Phalansterium. Eur J Protistol 40: 21–48

    Article  Google Scholar 

  • Cavender JC, Vadell EM, Landolt JC, Stephenson SL (2005) New species of small dictyostelids from the Great Smoky Mountains National Park. Mycologia 97:493–512

    Article  Google Scholar 

  • Chadefaud M (1960) Les végétaux non vasulaires (Cryptogamie). In: Chadefaud M, Emberger L (eds) Traité de botanique systématique, vol. 3. Massor et Cie, Paris, p 1018

    Google Scholar 

  • Chaine AS, Schtickzelle N, Polard T, Huet M, Clobert J (2010) Kin-based recognition and social aggregation in a ciliate. Evolution 64:1290–1300

    Google Scholar 

  • Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287

    Article  Google Scholar 

  • Clark CG, Alsmark UC, Tazreiter M, Saito-Nakano Y, Ali V, Marion S, Weber C, Mukherjee C, Bruchhaus I, Tannich E, Leippe M, Sicheritz-Ponten T, Foster PG, Samuelson J, Noël CJ, Hirt RP, Embley TM, Gilchrist CA, Mann BJ, Singh U, Ackers JP, Bhattacharya S, Bhattacharya A, Lohia A, Guillén N, Duchê ne M, Nozaki T, Hall N (2007) Structure and content of the Entamoeba histolytica genome. Adv Parasitol 65:51–190

    Article  Google Scholar 

  • Clarke M, Lohan AJ, Liu B, Lagkouvardos I, Roy S, Zafar N, Bertelli C, Schilde C, Kianianmomeni A, Burglin TR, Frech C, Turcotte B, Kopec KO, Synnott JM, Choo C, Paponov I, Finkler A, Soon Heng Tan C, Hutchins AP, Weinmeier T, Rattei T, Chu JS, Gimenez G, Irimia M, Rigden DJ, Fitzpatrick DA, Lorenzo-Morales J, Bateman A, Chiu CH, Tang P, Hegemann P, Fromm H, Raoult D, Greub G, Miranda-Saavedra D, Chen N, Nash P, Ginger ML, Horn M, Schaap P, Caler L, Loftus B (2013) Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome Biol 14:R11

    Google Scholar 

  • Corradi N, Haag KL, Pombert JF, Ebert D, Keeling PJ (2009) Draft genome sequence of the Daphnia pathogen Octosporea bayeri: insights into the gene content of a large microsporidian genome and a model for host-parasite interactions. Genome Biol 10:R106

    Article  Google Scholar 

  • Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sørensen MV, Haddock SH, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749

    Article  Google Scholar 

  • Dyková I, Veverková M, Fiala I, Machácková B, Pecková H (2003) Nuclearia pattersoni sp. n. (Filosea), a new species of amphizoic amoeba isolated from gills of roach (Rutilus rutilus), and its rickettsial endosymbiont. Folia Parasitol 50:161–170

    Google Scholar 

  • Eichinger L, Pachebat JA, Glockner G, Rajandream MA, Sucgang R, Berriman M, Song J, Olsen R, Szafranski K, Xu Q (2005) The genome of the social amoeba Dictyostelium discoideum. Nature 435:43–57

    Article  Google Scholar 

  • Escalante R, Vicente JJ (2000) Dictyostelium discoideum: a model system for differentiation and patterning. Int J Dev Biol 44:819–835

    Google Scholar 

  • Feldman SH, Wimsatt JH, Green DE (2005) Phylogenetic classification of the frog pathogen Amphibiothecum (Dermosporidium) penneri based on small ribosomal subunit sequencing. J Wildl Dis 41:701–706

    Google Scholar 

  • Felsenstein J (1978) Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27:401–410

    Article  Google Scholar 

  • Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot 59:1115–1126

    Article  Google Scholar 

  • Fiore-Donno AM, Berney C, Pawlowski J, Baldauf SL (2005) Higher-order phylogeny of plasmodial slime molds (Myxogastria) based on elongation factor 1-A and small subunit rRNA gene sequences. J Eukaryot Microbiol 52:201–210

    Article  Google Scholar 

  • Fiore-Donno AM, Nikolaev SI, Nelson M, Pawlowski J, Cavalier-Smith T, Baldauf SL (2010) Deep phylogeny and evolution of slime moulds (mycetozoa). Protist 161:55–70

    Article  Google Scholar 

  • Gilbert OM, Foster KR, Mehdiabadi NJ, Strassmann JE, Queller DC (2007) High relatedness maintains multicellular cooperation in a social amoeba by controlling cheater mutants. Proc Natl Acad Sci U S A 104:8913–8917

    Article  Google Scholar 

  • Gile GH, Faktorová D, Castlejohn CA, Burger G, Lang BF, Farmer MA, Lukes J, Keeling PJ (2009) Distribution and phylogeny of EFL and EF-1alpha in Euglenozoa suggest ancestral co-occurrence followed by differential loss. PLoS One 4:e5162

    Article  Google Scholar 

  • Gill EE, Fast NM (2006) Assessing the microsporidia-fungi relationship: combined phylogenetic analysis of eight genes. Gene 375:103–109

    Article  Google Scholar 

  • Glöckner G, Golderer G, Werner-Felmayer G, Meyer S, Marwan W (2008) A first glimpse at the transcriptome of Physarum polycephalum. BMC Genomics 9:6

    Article  Google Scholar 

  • Gribaldo S, Philippe H (2002) Ancient phylogenetic relationships. Theor Popul Biol 61:391–408

    Article  Google Scholar 

  • Hackett JD, Yoon HS, Li S, Reyes-Prieto A, Rümmele SE, Bhattacharya D (2007) Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates. Mol Biol Evol 24:1702–1713

    Article  Google Scholar 

  • Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AG, Roger AJ (2009) Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic "supergroups". Proc Natl Acad Sci U S A 106:3859–3864

    Article  Google Scholar 

  • Hejnol A, Obst M, Stamatakis A, Ott M, Rouse GW, Edgecombe GD, Martinez P, Baguà J, Bailly X, Jondelius U, Wiens M, Müller WE, Seaver E, Wheeler WC, Martindale MQ, Giribet G, Dunn CW (2009) Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc Biol Sci 276:4261–4270

    Article  Google Scholar 

  • Hendy MD, Penny D (1989) A framework for the quantitative study of evolutionary trees. Syst Zool 38:297–309

    Article  Google Scholar 

  • Herman RL (1984) Ichthyophonus-like infection in newts (Notophthalmus viridescens Rafinesque). J Wildl Dis 20:55–56

    Google Scholar 

  • Herr RA, Ajello L, Taylor JW, Arseculeratne SN, Mendoza L (1999) Phylogenetic analysis of Rhinosporidium seeberis 18S small-subunit ribosomal DNA groups this pathogen among members of the protoctistan Mesomycetozoa clade. J Clin Microbiol 37:2750–2754

    Google Scholar 

  • Hertel LA, Bayne C, Loker ES (2002) The symbiont Capsaspora owczarzaki, nov. gen. sp., isolated from three strains of the pulmonate snail Biomphalaria glabrata is related to members of the Mesomycetozoa. Int J Parasitol 32:1183–1191

    Article  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Thorsten Lumbsch H, Lutzoni F, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Kõljalg U, Kurtzman CP, Larsson KH, Lichtwardt R, Longcore J, Miadlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüssler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao YJ, Zhang N (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547

    Google Scholar 

  • Hillis DM (1996) Inferring complex phylogenies. Nature 383: 130–131

    Article  Google Scholar 

  • Hirt RP, Logsdon JM Jr, Healy B, Dorey MW, Doolittle WF, Embley TM (1999) Microsporidia are related to Fungi: evidence from the largest subunit of RNA polymerase II and other proteins. Proc Natl Acad Sci U S A 96:580–585

    Article  Google Scholar 

  • Holterman M, van der Wurff A, van den Elsen S, van Megen H, Bongers T, Holovachov O, Bakker J, Helder J (2006) Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among Nematodes and accelerated evolution toward crown clades. Mol Biol Evol 23:1792–1800

    Article  Google Scholar 

  • James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung GH, Johnson D, O’Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüssler A, Longcore JE, O’Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006a) Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443:818–822

    Article  Google Scholar 

  • James TY, Letcher PM, Longcore JE, Mozley-Standridge SE, Porter D, Powell MJ, Grffith GW, Vilgalys R (2006b) A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia 98:860–871

    Article  Google Scholar 

  • James-Clark H (1866) Note on the infusoria flagellata and the spongiae ciliatae. Am J Sci 1:113–114

    Google Scholar 

  • James-Clark H (1867) On the Spongiae Ciliatae as Infusoria Flagellata: or observations on the structure, animality and relationship of Leucosolenia botryoides Bowerbank. Mem Boston Soc Nat Hist 1:305–340

    Google Scholar 

  • Jay JM, Pohley WJ (1981) Dermosporidium penneri sp. n. from the skin of the American toad, Bufo americanus (Amphibia: Bufonidae). J Parasitol 67:108–110

    Article  Google Scholar 

  • Johansen T, Johansen S, Haugli FB (1988) Nucleotide sequence of the Physarum polycephalum small subunit ribosomal RNA as inferred from the gene sequence: secondary structure and evolutionary implications. Curr Genet 14:265–273

    Article  Google Scholar 

  • Kamaishi T, Hashimoto T, Nakamura Y, Nakamura F, Murata S, Okada N, Okamoto K, Shimizu M, Hasegawa M (1996) Protein phylogeny of translation elongation factor EF-1 alpha suggests microsporidians are extremely ancient eukaryotes. J Mol Evol 42: 257–263

    Article  Google Scholar 

  • Karpov SA, Leadbeater BSC (1997) Cytoskeleton structure and composition in choanoflagellates. Eur J Protistol 33:323–334

    Article  Google Scholar 

  • Keeling PJ, Doolittle WF (1996) Alpha-tubulin from early-diverging eukaryotic lineages and the evolution of the tubulin family. Mol Biol Evol 13:1297–1305

    Article  Google Scholar 

  • Kessin RH (2001) Dictyostelium: evolution, cell biology, and the development of multicellularity. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Khare A, Santorelli LA, Strassmann JE, Queller DC, Kuspa A, Shaulsky G (2009) Cheater-resistance is not futile. Nature 461:980–982

    Article  Google Scholar 

  • Kim E, Simpson AG, Graham LE (2006) Evolutionary relationships of apusomonads inferred from taxon-rich analyses of 6 nuclear encoded genes. Mol Biol Evol 23:2455–2466

    Article  Google Scholar 

  • Kimura H, Harada K, Hara K, Tamaki A (2002) Enzymatic approach to fungal association with arthropod guts: a case study for the crustacean host, Nihonotrypaea harmandi, and its foregut fungus, Enteromyces callianassae. Mar Ecol 23:157–183

    Article  Google Scholar 

  • King N, Carroll SB (2001) A receptor tyrosine kinase from choanoflagellates: molecular insights into early animal evolution. Proc Natl Acad Sci U S A 98:15032–15037

    Article  Google Scholar 

  • King N, Hittinger CT, Carroll SB (2003) Evolution of key cell signaling and adhesion protein families predates animal origins. Science 301:361–363

    Article  Google Scholar 

  • King N, Westbrook MJ, Young SL, Kuo A, Abedin M, Chapman J, Fairclough S, Hellsten U, Isogai Y, Letunic I, Marr M, Pincus D, Putnam N, Rokas A, Wright KJ, Zuzow R, Dirks W, Good M, Goodstein D, Lemons D, Li W, Lyons JB, Morris A, Nichols S, Richter DJ, Salamov A, Sequencing JG, Bork P, Lim WA, Manning G, Miller WT, McGinnis W, Shapiro H, Tjian R, Grigoriev IV, Rokhsar D (2008) The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451:783–788

    Article  Google Scholar 

  • King N, Young SL, Abedin M, Carr M, Leadbeater BS (2009) Separation of choanoflagellate and bacterial genomic DNA. Cold Spring Harb Protoc 2009(2):pdb.prot5154

    Google Scholar 

  • Kolisko M, Cepicka I, Hampl V, Leigh J, Roger AJ, Kulda J, Simpson AG, Flegr J (2008) Molecular phylogeny of diplomonads and enteromonads based on SSU rRNA, alpha-tubulin and HSP90 genes: implications for the evolutionary history of the double karyomastigont of diplomonads. BMC Evol Biol 8:205

    Article  Google Scholar 

  • Kruger W (1894) Kurze Charakteristik einiget niederer Organismen in Saftlusse der Laubbaume. Hedwigia 33:241–266

    Google Scholar 

  • Lado C (2001) NOMENMYX. A nomenclaturaltaxabase of Myxomycetes. Cuadernos de Trabajo de Flora Mycologica Iberica 16:1–224

    Google Scholar 

  • Lara E, Chatzinotas A, Simpson AG (2006) Andalucia (n. gen.)–the deepest branch within jakobids (Jakobida; Excavata), based on morphological and molecular study of a new flagellate from soil. J Eukaryot Microbiol 53:112–120

    Article  Google Scholar 

  • Lara E, Moreira D, López-García P (2010) The environmental clade LKM11 and Rozella form the deepest branching clade of fungi. Protist 161:116–121

    Article  Google Scholar 

  • Leadbeater BS, Karpov SA (2000) Cyst formation in a freshwater strain of the choanoflagellate Desmarella moniliformis Kent. J Eukaryot Microbiol 47:433–439

    Google Scholar 

  • Leadbeater BSC (1983) Distribution and chemistry of microfilaments in choanoflagellates, with special reference to the collar and other tentacle systems. Protistologica 19:157–166

    Google Scholar 

  • Leadbeater BSC (2008a) Choanoflagellate lorica construction and assembly: the nudiform condition. I. Savillea species. Protist 159:259–268

    Article  Google Scholar 

  • Leadbeater BSC (2008b) Choanoflagellate evolution: the morphological perspective. Protistology 5:256–267

    Google Scholar 

  • Leadbeater BSC (2010) Choanoflagellate lorica construction and assembly: the tectiform condition. Volkanus costatus ( = Diplotheca costata). Protist 161:160–176

    Article  Google Scholar 

  • Leadbeater BSC, Cheng R (2010) Costal strip production and lorica assembly in the large tectiform choanoflagellate Diaphanoeca grandis Ellis. Eur J Protistol 46: 96–110

    Article  Google Scholar 

  • Leadbeater BSC, Morton C (1974) A microscopical study of a marine species of Codosiga James-Clark (Choanoflagellata) with special reference to the ingestion of bacteria. Biol J Linn Soc 6:337–347

    Article  Google Scholar 

  • Leadbeater BSC, Thomsen H (2000) “Order Choanoflagellida”. An illustrated guide to the Protozoa, vol. 451, 2nd edn. Society of Protozoologists, Lawrence, pp 14–38

    Google Scholar 

  • Leadbeater BSC, Hassan R, Nelson M, Carr M, Baldauf SL (2008b) A new genus, Helgoeca gen. nov., for a nudiform choanoflagellate. Eur J Protistol 44:227–237

    Article  Google Scholar 

  • Leadbeater BSC, Yu Q, Kent J, Stekel DJ (2009) Three-dimensional images of choanoflagellate loricae. Proc R Soc B 276:3–11

    Article  Google Scholar 

  • Leakey RJG, Leadbeater BSC, Mitchell E, McCready SMM, Murray AWA (2002) The abundance and biomass of choanoflagellates and other nanoflagellates in waters of contrasting temperature to the north-west of South Georgia in the Southern Ocean. Eur J Protistol 38:333–350

    Article  Google Scholar 

  • Lee SC, Corradi N, Byrnes EJ 3rd, Torres-Martinez S, Dietrich FS, Keeling PJ, Heitman J (2008) Microsporidia evolved from ancestral sexual fungi. Curr Biol 18:1675–1679

    Article  Google Scholar 

  • Lichtwardt RW (1986) The Trichomycetes: fungal associates of arthropods. Springer-Verlag, New York, p 343

    Google Scholar 

  • Logares R, Bråte J, Bertilsson S, Clasen JL, Shalchian-Tabrizi K, Rengefors K (2009) Infrequent marine-freshwater transitions in the microbial world. Trends Microbiol 17:414–422

    Article  Google Scholar 

  • Maldonado M (2004) Choanoflagellates, choanocytes, and animal multicellularity. Invertebr Biol 123:1–22

    Article  Google Scholar 

  • Marande W, López-García P, Moreira D (2009) Eukaryotic diversity and phylogeny using small- and large-subunit ribosomal RNA genes from environmental samples. Environ Microbiol 11:3179–3188

    Article  Google Scholar 

  • Marshall WL, Celio G, McLaughlin DJ, Berbee ML (2008) Multiple isolations of a culturable, motile Ichthyosporean (Mesomycetozoa, Opisthokonta), Creolimax fragrantissima n. gen., n. sp., from marine invertebrate digestive tracts. Protist 159:415–433

    Google Scholar 

  • Martin GW, Alexopoulos CJ (1969) The Myxomycetes. University of Iowa Press, Iowa City

    Google Scholar 

  • Marwan W (2010) Systems biology. Amoeba-inspired network design. Science 327:419–420

    Article  Google Scholar 

  • Massana R, Terrado R, Forn I, Lovejoy C, Pedrós-Alió C (2006) Distribution and abundance of uncultured heterotrophic flagellates in the world oceans. Environ Microbiol 8:1515–1522

    Article  Google Scholar 

  • McLaughlin DJ, Hibbett DS, Lutzoni F, Spatafora JW, Vilgalys R (2009) The search for the fungal tree of life. Trends Microbiol 17:488–497

    Article  Google Scholar 

  • Medina M, Collins AG, Silberman JD, Sogin ML (2001) Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA. Proc Natl Acad Sci U S A 98:9707–9712

    Article  Google Scholar 

  • Medlin LK (2007) If everything is everywhere, do they share a common gene pool? Gene 406:180–183

    Article  Google Scholar 

  • Mehdiabadi NJ, Kronforst MR, Queller DC, Strassmann JE (2009) Phylogeny, reproductive isolation and kin recognition in the social amoeba Dictyostelium purpureum. Evolution 63:542–548

    Article  Google Scholar 

  • Mendoza L, Taylor J, Ajello L (2002) The class Mesomycetozoea: a heterogeneous group of microorganisms at the animal-fungal boundary. Ann Rev Microbiol 56:315–344

    Article  Google Scholar 

  • Minge MA, Silberman JD, Orr RJ, Cavalier-Smith T, Shalchian-Tabrizi K, Burki F, Skjaeveland A, Jakobsen KS (2009) Evolutionary position of breviate amoebae and the primary eukaryote divergence. Proc Biol Sci 276:597–604

    Article  Google Scholar 

  • Moreira D, von der Heyden S, Bass D, López-García P, Chao EEY, Cavalier-Smith T (2007) Global eukaryote phylogeny: combined small- and large-subunit ribosomal DNA trees support monophyly of Rhizaria, Retaria and Excavata. Mol Phylogenet Evol 44:255–266

    Article  Google Scholar 

  • Nikolaev SI, Berney C, Fahrni JF, Bolivar I, Polet S, Mylnikov AP, Aleshin VV, Petrov NB, Pawlowski J (2004) The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes. Proc Natl Acad Sci U S A 101:8066–8071

    Article  Google Scholar 

  • Nikolaev SI, Berney C, Petrov NB, Mylnikov AP, Fahrni JF, Pawlowski J (2006) Phylogenetic position of Multicilia marina and the evolution of Amoebozoa. Int J Syst Evol Microbiol 56:1449–1458

    Article  Google Scholar 

  • Nitsche F, Arndt H (2008) A new choanoflagellate species from Taiwan: morphological and molecular biological studies of Diplotheca elongata nov. spec. and D. costata. Eur J Protistol 44:220–226

    Article  Google Scholar 

  • Nolte V, Pandey RV, Jost S, Medinger R, Ottenwälder B, Boenigk J, Schlötterer C (2010) Contrasting seasonal niche separation between rare and abundant taxa conceals the extent of protist diversity. Mol Ecol 19:2908–2915

    Article  Google Scholar 

  • Norris RE (1965) Neustonic marine Craspedomonadales (Choanoflagellata) from Washington and California. J Protozool 12:589–612

    Google Scholar 

  • Not F, del Campo J, Balagué V, de Vargas C, Massana R (2009) New insights into the diversity of marine picoeukaryotes. PLoS One 4:e7143

    Article  Google Scholar 

  • Ohta T (1972) Population size and rate of evolution. J Mol Evol 1:305–314

    Article  Google Scholar 

  • Olive LS (1975) The Mycetozoans. Academic, New York

    Google Scholar 

  • O’Malley MA (2007) The nineteenth century roots of ‘everything is everywhere’. Nat Rev Microbiol 5:647–651

    Article  Google Scholar 

  • Ordás MC, Figueras A (1998) In vitro culture of Perkinsus atlanticus, a parasite of the carpet shell clam Ruditapes decussates. Dis Aquat Org 33:129–136

    Article  Google Scholar 

  • Owczarzak A, Stibbs HH, Bayne CJ (1980) The destruction of Schistosoma mansoni mother sporocysts in vitro by amoebae isolated from Biomphalaria glabrata: an ultrastructural study. J Invertebr Pathol 35:26–33

    Article  Google Scholar 

  • Page FC (1987) The classification of ‘naked’ amoebae (Phylum Rhizopoda). Arch Protistenkd 133:199–217

    Article  Google Scholar 

  • Palmer JD, Delwiche CF (1996) Second-hand chloroplasts and the case of the disappearing nucleus. Proc Natl Acad Sci U S A 93:7432–7435

    Article  Google Scholar 

  • Parfrey LW, Grant J, Tekle YI, Lasek-Nesselquist E, Morrison HG, Sogin ML, Patterson DJ, Katz LA (2010) Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life. Syst Biol 59:518–533

    Article  Google Scholar 

  • Parikh A, Miranda ER, Katoh-Kurasawa M, Fuller D, Rot G, Zagar L, Curk T, Sucgang R, Chen R, Zupan B, Loomis WF, Kuspa A, Shaulsky G (2010) Conserved developmental transcriptomes in evolutionarily divergent species. Genome Biol 11:R35

    Article  Google Scholar 

  • Patterson DJ (1984) The genus Nuclearia (Sarcodina, Filosea): species composition and characteristics of the taxa. Arch Protistenkd 128:127–139

    Article  Google Scholar 

  • Patterson DJ (1988) The evolution of protozoa. Mem Inst Oswaldo Cruz 83(Suppl 1):580–600

    Article  Google Scholar 

  • Patterson DJ (1994) Protozoa, evolution and classification. In: Progress in protozoology. Proceedings of the IX International Congress of Protozoology. Fischer, Stuttgart, pp 1–14

    Google Scholar 

  • Patterson DJ (1999) The diversity of eukaryotes. Am Nat 154:96–124

    Article  Google Scholar 

  • Patterson DJ, Nygaard K, Steinberg G, Turley CM (1992) Heterotrophic flagellates and other protists associated with detritus in the mid North Atlantic. J Mar Biol Assoc U K 73:67–95

    Article  Google Scholar 

  • Pawlowski J, Burki F (2009) Untangling the phylogeny of amoeboid protists. J Eukaryot Microbiol 56:16–25

    Google Scholar 

  • Pettitt ME, Orme BAA, Blake JR, Leadbeater BSC (2002) The hydrodynamics of filter feeding in choanoflagellates. Eur J Protistol 38:313–332

    Article  Google Scholar 

  • Philippe H, Derelle R, Lopez P, Pick K, Borchiellini C, Boury-Esnault N, Vacelet J, Renard E, Houliston E, Quéinnec E, Da Silva C, Wincker P, Le Guyader H, Leys S, Jackson DJ, Schreiber F, Erpenbeck D, Morgenstern B, Wörheide G, Manuel M (2009) Phylogenomics revives traditional views on deep animal relationships. Curr Biol 19:706–712

    Article  Google Scholar 

  • Pick KS, Philippe H, Schreiber F, Erpenbeck D, Jackson DJ, Wrede P, Wiens M, Alié A, Morgenstern B, Manuel M, Wörheide G (2010) Improved phylogenomic taxon sampling noticeably affects non-bilaterian relationships. Mol Biol Evol 27:1983–1987

    Article  Google Scholar 

  • Pirozynski KA, Malloch DW (1975) The origin of land plants: a matter of mycotrophism. Biosystems 5:153–164

    Article  Google Scholar 

  • Purvis A, Hector A (2000) Getting the measure of biodiversity. Nature 405: 212–219

    Article  Google Scholar 

  • Ragan MA, Goggins CL, Cawthorn RJ, Cerenius L, Jamienson AV, Plourde SM, Rand TG, Söderhäll K, Gutell RR (1998) A novel clade of protistan parasites near the animal-fungal divergence. Proc Natl Acad Sci U S A 93:11907–11912

    Article  Google Scholar 

  • Raghu-Kumar S, Chandramohan D, Ramaiah N (1987) Contribution of the thraustochytrid Corallochytrium limacisporum Raghu-kumar to microbial biomass in coral reef lagoons. Indian J Mar Sci 16:122–125

    Google Scholar 

  • Rand TG (1994) An unusual form of Ichthyophonus hoferi from yellowtail flounder Limanda Ferruginea from the Nova Scotia shelf. Dis Aquat Org 18:21–28

    Article  Google Scholar 

  • Raper KB (1984) The Dictyostelids. Princeton University Press, Princeton

    Google Scholar 

  • Reeb VC, Peglar MT, Yoon HS, Bai JR, Wu M, Shiu P, Grafenberg JL, Reyes-Prieto A, Rümmele SE, Gross J, Bhattacharya D (2009) Interrelationships of chromalveolates within a broadly sampled tree of photosynthetic protists. Mol Phylogenet Evol 53:202–211

    Article  Google Scholar 

  • Rohde RA, Muller RA (2005) Cycles in fossil diversity. Nature 434:208–210

    Article  Google Scholar 

  • Roger AJ, Smith MW, Doolittle RF, Doolittle WF (1996) Evidence for the Heterolobosea from phylogenetic analysis of genes encoding glyceraldehyde-3-phosphate dehydrogenase. J Eukaryot Microbiol 43:475–485

    Article  Google Scholar 

  • Romeralo M, Cavender J, Landolt J, Stepehnson S, Baldauf S (2011) The expanding phylogeny of social amoebae defines new major lineages and emerging patterns in morphological evolution. (BMC Evolutionary Biology 11:84)

    Google Scholar 

  • Romeralo M, Escalante R, Sastre L, Lado C (2007) Molecular systematics of dictyostelids: 5.8S ribosomal DNA and internal transcribed spacer region analyses. Eukaryot Cell 6:110–116

    Article  Google Scholar 

  • Romeralo M, Spiegel FW, Baldauf SL (2010) A fully resolved phylogeny of the social amoebas (Dictyostelia) based on combined SSU and ITS rDNA sequences. Protist 161:539–548

    Article  Google Scholar 

  • Rota-Stabelli O, Kayal E, Gleeson D, Daub J, Boore JL, Telford MJ, Pisani D, Blaxter M, Lavrov DV (2010) Ecdysozoan mitogenomics: evidence for a common origin of the legged invertebrates, the Panarthropoda. Genome Biol Evol 2:425–440

    Article  Google Scholar 

  • Ruiz-Trillo I, Burger G, Holland PWH, King N, Lang BF, Roger AJ, Gray MW (2007) The origins of multicellularity: a multi-taxon genome initiative. Trends Genet 23:113–118

    Article  Google Scholar 

  • Ruiz-Trillo I, Inagaki Y, Davis LA, Sperstad S, Landfald B, Roger AJ (2004) Capsaspora owczarzaki is an independent opisthokont lineage. Curr Biol 14:R946

    Article  Google Scholar 

  • Ruiz-Trillo I, Roger AJ, Burger G, Gray MW, Lang BF (2008) A phylogenomic investigation into the origin of Metazoa. Mol Biol Evol 25:664–672

    Article  Google Scholar 

  • Sakaguchi M, Inagaki Y, Hashimoto T (2007) Centrohelida is still searching for a phylogenetic home: analyses of seven Raphidiophrys contractilis genes. Gene 405:47–54

    Article  Google Scholar 

  • Sanderson MJ (1989) Confidence limits on phylogenies: the bootstrap revisited. Cladistics 5:113–129

    Article  Google Scholar 

  • Saville-Kent W (1880) Manual of the infusoria, including a description of all known flagellate, ciliate, and tentaculiferous protozoa, British and foreign and an account of the organization and affinities of the sponges, vol 1. pp 135–142

    Google Scholar 

  • Schaap P, Winckler T, Nelson M, Alvarez-Curto E, Elgie B, Hagiwara H, Cavender J, Milano-Curto A, Rozen DE, Dingermann T, Mutzel R, Baldauf SL (2006) Molecular phylogeny and evolution of morphology in the social amoebas. Science 314:661–663

    Article  Google Scholar 

  • Schweikert M, Schnepf E (1996) Pseudaphelidium drebesii, gen et spec nov (incerta sedis), a parasite of the marine centric diatom Thalassiosira punctigera. Arch Protistenkd 147:11–17

    Article  Google Scholar 

  • Shadwick LL, Spiegel FW, Shadwick JD, Brown MW, Silberman JD (2009) Eumycetozoa  =  Amoebozoa?: SSUrDNA phylogeny of protosteloid slime molds and its significance for the amoebozoan supergroup. PLoS One 4:e6754

    Article  Google Scholar 

  • Shalchian-Tabrizi K, Minge MA, Espelund M, Orr R, Ruden T, Jakobsen KS, Cavalier-Smith T (2008) Multigene phylogeny of Choanozoa and the origin of animals. PLoS One 3:e2098

    Article  Google Scholar 

  • Smirnov AV, Nassonova ES, Chao E, Cavalier-Smith T (2007) Phylogeny, evolution, and taxonomy of vannellid amoebae. Protist 158:295–324

    Article  Google Scholar 

  • Smirnov AV, Nassonova ES, Cavalier-Smith T (2008) Correct identification of species makes the amoebozoan rRNA tree congruent with morphology for the order Leptomyxida Page 1987; with description of Acramoeba dendroida n. g., n. sp., originally misidentified as ‘Gephyramoeba sp.’. Eur J Protistol 44:35–44

    Article  Google Scholar 

  • Snell EA, Brooke NM, Taylor WR, Casane D, Philippe H, Holland PW (2006) An unusual choanoflagellate protein released by Hedgehog autocatalytic processing. Proc Biol Sci 273:401–407

    Article  Google Scholar 

  • Spanggaard B, Skouboe P, Rossen L, Taylor JW (1996) Phylogenetic relationships of the intercellular fish pathogen Ichthyophonus hoferi, and fungi, choanoflagellates and the rosette agent. Mar Biol 126:109–115

    Article  Google Scholar 

  • Sparrow FK (1936) Biological observations on the marine fungi of Woods Hole waters. Biol Bull 70:236–263

    Article  Google Scholar 

  • Stajich JE, Berbee ML, Blackwell M, Hibbett DS, James TY, Spatafora JW, Taylor JW (2009) The fungi. Curr Biol 19:R840–R845

    Article  Google Scholar 

  • Stechmann A, Cavalier-Smith T (2002) Rooting the eukaryote tree by using a derived gene fusion. Science 297:89–91

    Article  Google Scholar 

  • Steenkamp ET, Wright J, Baldauf SL (2006) The protistan origins of animals and fungi. Mol Biol Evol 23:93–106

    Article  Google Scholar 

  • Stibbs HH, Owczarzak A, Bayne CJ, DeWan P (1979) Schistosome sporocyst-killing amoebae isolated from Biomphalaria glabrata. J Invertebr Pathol 33:159–170

    Article  Google Scholar 

  • Swanson AR, Spiegel FW, Cavender JC (2002) Taxonomy, slime molds, and the questions we ask. Mycologia 94:968–979

    Article  Google Scholar 

  • Tehler A (1988) A cladistic outline of the Eumycota. Cladistics 4:227–277

    Article  Google Scholar 

  • Tekle YI, Grant J, Anderson OR, Nerad TA, Cole JC, Patterson DJ, Katz LA (2008) Phylogenetic placement of diverse amoebae inferred from multigene analyses and assessment of clade stability within ‘Amoebozoa’ upon removal of varying rate classes of SSU-rDNA. Mol Phylogenet Evol 47:339–352

    Article  Google Scholar 

  • Telford MJ (2009) Animal evolution: once upon a time. Curr Biol 19:R339–R341

    Article  Google Scholar 

  • Telford RJ, Vandvik V, Birks HJ 2006) Dispersal limitations matter for microbial morphospecies. Science 312:1015

    Article  Google Scholar 

  • Thomsen HA, Buck KB, Coale SL, Garrison DL, Gowing MM (1990) Loricate choanoflagellates (Acanthoecidae Choanoflagellida) from the Weddell Sea, Antarctica. Zoologica Scripta 19:367–387

    Article  Google Scholar 

  • Thomsen HA, Buck K, Chavez F (1991) Choanoflagellates of the central California waters: taxonomy, morphology and species assemblages. Ophelia 33:131–164

    Article  Google Scholar 

  • Torija P, Robles A, Escalante R (2006) Optimization of a large-scale gene disruption protocol in Dictyostelium and analysis of conserved genes of unknown function. BMC Microbiol 6:75

    Article  Google Scholar 

  • Vadell E, Cavender JC (2007) Dictyostelids living in the soils of the Atlantic Forest. Iguazú region, Misiones, Argentina. Description of new species. Mycologia 99:112–124

    Article  Google Scholar 

  • van Etten JL, Lane LC, Meints RH (1991) Viruses and viruslike particles of eukaryotic algae. Microbiol Rev 55:586–620

    Google Scholar 

  • Vandenkoornhuyse P, Baldauf SL, Leyval C, Straczek J, Young JP (2002) Extensive fungal diversity in plant roots. Science 295:2051

    Article  Google Scholar 

  • Velicer GJ, Vos M (2009) Sociobiology of the myxobacteria. Annu Rev Microbiol 63:599–623

    Article  Google Scholar 

  • Vossbrinck CR, Maddox JV, Friedman S, Debrunner-Vossbrinck BA, Woese CR (1987) Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes. Nature 326:411–414

    Article  Google Scholar 

  • Williams RS, Boeckeler K, Graf R, Muller-Taubenberger A, Li Z, Isberg RR, Wessels D, Soll DR, Alexander H, Alexander S (2006) Towards a molecular understanding of human diseases using Dictyostelium discoideum. Trends Mol Med 12:415–424

    Article  Google Scholar 

  • Worley AC, Raper KB, Hohl M (1979) Fonticula alba: a new cellular slime mold (Acrasiomycetes). Mycologia 71:746–760

    Article  Google Scholar 

  • Wainright PO, Hinkle G, Sogin ML, Stickel SK (1993) Monophyletic origins of the metazoa: an evolutionary link with fungi. Science 260:340–342

    Article  Google Scholar 

  • Whisler HC (1960) Pure culture of the Trichomycete, Amoebidium parasiticum. Nature 186:732–733

    Article  Google Scholar 

  • Yoshida M, Nakayama T, Inouye I (2009) Nuclearia thermophila sp. nov. (Nucleariidae), a new nucleariid species isolated from Yunoko Lake in Nikko (Japan). Eur J Protistol 45:147–155

    Article  Google Scholar 

  • Zettler LAA, Nerad TA, O’Kelly CJ, Sogin ML (2001) The nucleariid amoebae: more protists at the animal-fungal boundary. J Eukaryot Microbiol 48:293–297

    Article  Google Scholar 

  • Zubkov MV, Martin-Cereceda M, Novarino G, Wootton EC, Roberts EC (2006) Cell surface lectin-binding glycoconjugates on marine planktonic protists. FEMS Microbiol Lett 265:202–207

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Barry Leadbeater for numerous helpful discussions and for careful reading of the manuscript. We are also very grateful to Andreas Walberg and David Hibbett for advice on deep phylogeny of Metazoa and Fungi, respectively, and critical evaluation of Fig. 7.3. Maria Romeralo was supported for part of this work by a postdoctoral fellowship from the Systematics Society of Spain and by EU Marie Curie grant PIEF-GA-2009-236501. The work on Choanoflagellates was supported by a grant from the BBSRC (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Baldauf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Baldauf, S., Romeralo, M., Carr, M. (2013). The Evolutionary Origin of Animals and Fungi. In: Trueba, G., Montúfar, C. (eds) Evolution from the Galapagos. Social and Ecological Interactions in the Galapagos Islands, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6732-8_7

Download citation

Publish with us

Policies and ethics