Skip to main content

Communities in Evolving Networks: Definitions, Detection, and Analysis Techniques

  • Chapter
  • First Online:

Abstract

Complex networks can often be divided in dense sub-networks called communities. These communities are crucial in understanding the underlying structure of these networks and may have applications in data mining or visualization for instance. In this chapter, a survey of recent advances in the definition, the detection and the analysis of these communities in the particular case of evolving networks has been carried out.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.facebook.com/

  2. 2.

    LiveJournal (LJ)http://www.livejournal.com/

References

  1. J.I. Alvarez-hamelin, A. Barrat, A. Vespignani, Large scale networks fingerprinting and visualization using the k-core decomposition, in Advances in Neural Information Processing Systems 18 (MIT Press, 2006), pp. 41–50

    Google Scholar 

  2. S. White, P. Smyth, A spectral clustering approach to finding communities in graphs, in SIAM International Conference on Data Mining (2005)

    Google Scholar 

  3. S. Asur, S. Parthasarathy, D. Ucar, An event-based framework for characterizing the evolutionary behavior of interaction graphs, in Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD, 2007), 978-1-59593-609-7, San Jose, CA, pp. 913–921. http://doi.acm.org/10.1145/1281192.1281290

  4. T. Aynaud, J.-L. Guillaume, Long range community detection, LAWDN - Latin-American Workshop on Dynamic Networks, INTECIN - Facultad de Ingeniería (U.B.A.) - I.T.B.A, p. 4 (2010). http://hal.inria.fr/inria-00531750/PDF/lawdn2010%5C;_submission%5C;_5.pdf

  5. L. Backstrom, D. Huttenlocher, J. Kleinberg, X. Lan, Group formation in large social networks: membership, growth, and evolution, in Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, p. 54, 2006

    Google Scholar 

  6. D.A. Bader, K. Madduri, Gtgraph: A synthetic graph generator suite (2006). http://www.cse.psu.edu/~madduri/software/GTgraph/index.html

  7. Y. Bar-Yam, Dynamic of Complex Systems. Addison-Wesley stydies in nonlinearity. The Advanced Book Program (Westview Press, Boulder, 1997), p. 848., ISBN 0813341213, 9780813341217

    Google Scholar 

  8. M. Beiró, J. Busch, Visualizing communities in dynamic networks, in Latin American Workshop on Dynamic Networks, vol. 1, 2010

    Google Scholar 

  9. R. Bekkerman, A. Mccallum, G. Huang, Automatic Categorization of Email into Folders: Benchmark Experiments on Enron and SRI Corpora. Center for Intelligent Information Retrieval, Department of Computer Science, University of Massachusetts Amherst, Technical Report IR (2004) pp. 4–6

    Google Scholar 

  10. J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms (Kluwer Academic, Norwell, MA, 1981)

    Book  MATH  Google Scholar 

  11. V.D. Blondel, J.L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of communities in large networks. J. Stat. Mech. Theory Experiment 2008(10), P10008 (2008). http://stacks.iop.org/1742-5468/2008/i=10/a=P10008

  12. J. Camacho, R. Guimerá, L.A.N. Amaral, Robust patterns in food web structure. Phys. Rev. Lett. 88(22), 228102 (2002)

    Article  Google Scholar 

  13. D. Chakrabarti, S. Papadimitriou, D.S. Modha, C. Faloutsos, Fully automatic cross-associations, in Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’04 (ACM, New York, NY, 2004), pp. 79–88

    Google Scholar 

  14. D. Chakrabarti, Y. Zhan, C. Faloutsos, R-mat: A recursive model for graph mining, in In SDM, 2004

    Google Scholar 

  15. J. Chen, B. Yuan, Detecting functional modules in the yeast protein-protein interaction network. Bioinformatics 22(18), 2283–2290 (2006)

    Article  Google Scholar 

  16. Z. Chen, K.a. Wilson, Y. Jin, W. Hendrix, N.F. Samatova, Detecting and tracking community dynamics in evolutionary networks, in 2010 IEEE International Conference on Data Mining Workshops, pp. 318–327, Dec. 2010

    Google Scholar 

  17. Y. Chi, S. Zhu, X. Song, J. Tatemura, B.L. Tseng, Structural and temporal analysis of the blogosphere through community factorization, in Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’07, p. 163, 2007

    Google Scholar 

  18. A. Condon, R.M. Karp, Algorithms for graph partitioning on the planted partition model. Random Struct. Algorithm 18, 116–140 (1999)

    Article  MathSciNet  Google Scholar 

  19. K. Crawford, Presented at Oxford Internet Institute’s A Decade in Internet Time: Symposium on the Dynamics of the Internet and Society, Six provocations for big data. Social Science Research Network Working Paper Series (13 September 2011) Computer 1–17 (2011)

    Google Scholar 

  20. L. Danon, A. Díaz-Guilera, J. Duch, A. Arenas, Comparing community structure identification. J. Stat. Mech. Theor Exp. 2005(09), P09008 (2005)

    Google Scholar 

  21. T. Dinh, I. Shin, N. Thai, M. Thai, A general approach for modules identification in evolving networks. Dynam. Inform. 40(4), 83–100 (2010)

    MathSciNet  Google Scholar 

  22. Y. Dourisboure, F. Geraci, M. Pellegrini, Extraction and classification of dense communities in the web, in Proceedings of the 16th International Conference on World Wide Web, WWW ’07 (ACM, New York, NY, 2007), pp. 461–470

    Google Scholar 

  23. D. Duan, Y. Li, Y. Jin, Z. Lu, Community mining on dynamic weighted directed graphs, in Proceeding of the 1st ACM International Workshop on Complex Networks Meet Information and Knowledge Management (ACM, 2009), pp. 11–18

    Google Scholar 

  24. H. Ebel, L.-I. Mielsch, S. Bornholdt, Scale-free topology of e-mail networks. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 66(3 Pt 2A), 035103 (2002)

    Google Scholar 

  25. B. Efron, R.J. Tibshirani, An Introduction to the Bootstrap (Chapman & Hall, New York, 1993)

    MATH  Google Scholar 

  26. N.B. Ellison, C. Steinfield, C. Lampe, The benefits of facebook friends: Social capital and college students use of online social network sites. J. Comput. Mediat. Comm. 12(4), 1143–1168 (2007)

    Article  Google Scholar 

  27. M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, X. Xu, Incremental clustering for mining in a data warehousing environment, in Proceedings of 24rd International Conference on Very Large Data Bases, VLDB’98 ed. by A. Gupta, O. Shmueli, J. Widom (Morgan Kaufmann, New York City, New York, 1998), pp. 323–333

    Google Scholar 

  28. M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise in Conference on Knowledge Discovery and Data Mining (AAAI Press, 1996), pp. 226–231

    Google Scholar 

  29. T. Falkowski, A. Barth, M. Spiliopoulou, Studying community dynamics with an incremental graph mining algorithm, in Proc. of the 14 th Americas Conference on Information Systems (AMCIS 2008), pp. 1–11, 2008

    Google Scholar 

  30. T. Falkowski, M. Spiliopoulou, Data mining for community dynamics. Kunstliche Intelligenz 3, 23–29 (2007)

    Google Scholar 

  31. T. Falkowski, M. Spiliopoulou, Users in volatile communities: Studying active participation and community evolution. Lect. Note Comput. Sci. 4511, 47 (2007)

    Article  Google Scholar 

  32. S. Fortunato, Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  33. S. Fortunato, M. Barthelemy, Resolution limit in community detection. Proc. Natl. Acad. Sci. USA 104(1), 36–41 (2007)

    Article  Google Scholar 

  34. E. Gabrilovich, S. Markovitch, Computing semantic relatedness using wikipedia-based explicit semantic analysis, in Proceedings of The Twentieth International Joint Conference for Artificial Intelligence, pp. 1606–1611, Hyderabad, India, 2007

    Google Scholar 

  35. L.C. Giles, K. Bollacker, S. Lawrence, Citeseer: an automatic citation indexing system, in The Third ACM Conference on Digital Libraries, (ACM Press, Pittsburgh, 1998), pp. 89–98

    Google Scholar 

  36. M. Girvan, M.E.J. Newman, Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. P. Gongla, C.R. Rizzuto, Where did that community go? - communities of practice that disappear, in Knowledge Networks: Innovation Through Communities of Practice, ed. by P. Hildreth, C. Kimble (Idea Group, Hershey, PA, 2004)

    Google Scholar 

  38. R. Görke, P. Maillard, C. Staudt, Modularity-driven clustering of dynamic graphs. In: Proceedings of the 9th International Symposium on Experimental Algorithms (SEA’10), Lecture Notes in Computer Science, vol. 6049 (Springer, 2010), pp. 436–448

    Google Scholar 

  39. D. Greene, D. Doyle, P. Cunningham, Tracking the evolution of communities in dynamic social networks, in 2010 International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2010), 9–11 August 2010, Odense, Denmark, N. Memon, R. Alhajj. The Institute of Electrical and Electronics Engineers, Inc. (IEEE, 2010), pp. 9–11. ISBN: 978-1-4244-7787-6

    Google Scholar 

  40. P.D. Grnwald, I.J. Myung, M.A. Pitt, Advances in Minimum Description Length: Theory and Applications (Neural Information Processing series) (MIT Press, 2005), 444 p. ISBN 0262072629, 9780262072625

    Google Scholar 

  41. R. Guimerá, L.A.N. Amaral, Cartography of complex networks: modules and universal roles. J. Stat. Mech. 2005(P02001), nihpa35573 (2005)

    Google Scholar 

  42. R. Guimerá, M. Sales-Pardo, L.A.N. Amaral, Modularity from fluctuations in random graphs and complex networks. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 70(2 Pt 2), 025101 (2004)

    Article  Google Scholar 

  43. L.H. Hartwell, J.J. Hopfield, S. Leibler, A.W. Murray, From molecular to modular cell biology. Nature 402(6761), 47 (1999)

    Google Scholar 

  44. J. Hopcroft, O. Khan, B. Kulis, B. Selman, Tracking evolving communities in large linked networks. Proc Natl Acad Sci USA 101(1), 5249–5253

    Google Scholar 

  45. A. Jain, R. Dubes, Algorithms for Clustering Data (Prentice-Hall, Upper Saddle River, NJ, 1988)

    MATH  Google Scholar 

  46. M. James, D.R, White, Structural cohesion and embeddedness: A hierarchical concept of social groups. Am. Socio. Rev. 68(1), 103–127 (2003)

    Google Scholar 

  47. M.B. Jdidia, C. Robardet, E. Fleury, Communities detection and analysis of their dynamics in collaborative networks, in Dynamic Communities: from Connectivity to Information Society Workshop Co-located with ICDIM’07 (IEEE, 2007), pp. 11–17. http://liris.cnrs.fr/publis/?id=3258

  48. H. Jeong, S.P. Mason, A.L. Barabási, Z.N. Oltvai, Lethality and centrality in protein networks. Nature 411(6833), 41–42 (2001)

    Article  Google Scholar 

  49. H. Jeong, Z. Néda, A.L. Barabási, Measuring preferential attachment in evolving networks. Europhys. Lett. 61(4), 567–572 (2003)

    Article  Google Scholar 

  50. E.M. Jin, M. Girvan, M.E. Newman, Structure of growing social networks. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 64(4 Pt 2), 046132 (2001)

    Article  Google Scholar 

  51. A.E. Krause, K.A. Frank, D.M. Mason, R.E. Ulanowicz, W.W. Taylor, Compartments revealed in food-web structure. Nature 426(6964), 282–285 (2003)

    Article  Google Scholar 

  52. R. Kumar, A. Tomkins, D. Chakrabarti, Evolutionary clustering, in Proc. of the 12th ACM SIGKDD Conference, 2006

    Google Scholar 

  53. H. Kwak, Y. Choi, Y.-H. Eom, H. Jeong, S. Moon, Mining communities in networks: a solution for consistency and its evaluation, in Proc. of the 9th ACM SIGCOMM Conference on Internet Measurement Conference, pp. 301–314, 2009

    Google Scholar 

  54. A. Lancichinetti, S. Fortunato, Consensus clustering in complex networks. Sci. Rep. 2, 336 (2012)

    Article  Google Scholar 

  55. A. Lancichinetti, S. Fortunato, Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Phys. Rev. E80, 016118 (2009)

    Google Scholar 

  56. A. Lancichinetti, S. Fortunato, F. Radicchi, Benchmark graphs for testing community detection algorithms. Phys. Rev. E78, 046110 (2008)

    Google Scholar 

  57. J. Leskovec, J. Kleinberg, C. Faloutsos, Graphs over time: densification laws, shrinking diameters and possible explanations, in Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining KDD’05, Chicago, IL (ACM, New York, 2005), pp. 177–187. ISBN 1-59593-135-X, doi.acm.org/10.1145/1081870.1081893

  58. J. Leskovec, K.J. Lang, M. Mahoney, Empirical comparison of algorithms for network community detection, in Proceedings of the 19th International Conference on World Wide Web, WWW ’10 (ACM, New York, NY, 2010), pp. 631–640

    Google Scholar 

  59. R.D. Luce, A.D. Perry, A method of matrix analysis of group structure. Psychometrika 14(2), 95–116 (1949)

    Article  MathSciNet  Google Scholar 

  60. C.P. Massen, J.P.K. Doye, Thermodynamics of community structure. Arxiv preprint cond-mat/0610077 (2006)

    Google Scholar 

  61. F. McSherry, Spectral partitioning of random graphs, in Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, FOCS ’01 (IEEE Computer Society, Washington, DC, 2001), p. 529

    Google Scholar 

  62. J. Moody, D.A. McFarland, S. Bender-DeMoll, Dynamic network visualization: methods for meaning with longitudinal network movies. Am. J. Sociol. 110, 1206–1241 (2005)

    Article  Google Scholar 

  63. P. Mucha, T. Richardson, K. Macon, M.A. Porter, Community structure in time-dependent, multiscale, and multiplex networks. Science 876, 10–13 (2010)

    MathSciNet  Google Scholar 

  64. M.E.J. Newman, Analysis of weighted networks. Phys. Rev. E 70, 056131 (2004)

    Article  Google Scholar 

  65. M.E.J. Newman, Fast algorithm for detecting community structure in networks. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 69(6 Pt 2), 066133 (2004)

    Article  Google Scholar 

  66. M.E.J. Newman, Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  67. M.E.J. Newman, A.L. Barabási, D.J. Watts (eds.), The Structure and Dynamics of Networks (Princeton University Press, Princeton, 2006)

    MATH  Google Scholar 

  68. M.E.J. Newman, M. Girvan, Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 26113 (2004)

    Google Scholar 

  69. H. Ning, W. Xu, Y. Chi, Y. Gong, T. Huang, Incremental spectral clustering with application to monitoring of evolving blog communities, in SIAM International Conference on Data Mining, 2007

    Google Scholar 

  70. G. Palla, A.-L. Barabasi, T. Vicsek, Quantifying social group evolution. Nature 446, 664–667 (2007)

    Article  Google Scholar 

  71. G. Palla, I. Derenyi, I. Farkas, T. Vicsek, Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814 (2005)

    Article  Google Scholar 

  72. R. Pastor-Satorras, A. Vázquez, A. Vespignani, Dynamical and correlation properties of the internet. Phys. Rev. Lett. 87(25), 258701 (2001)

    Article  Google Scholar 

  73. R. Pastor-Satorras, A. Vespignani, Evolution and Structure of the Internet: A Statistical Physics Approach (Cambridge University Press, New York, NY, 2004)

    Book  Google Scholar 

  74. P. Pons, M. Latapy, Computing communities in large networks using random walks. J. Graph Algorithm Appl. 10, 191–218 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  75. F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, D. Parisi, Defining and identifying communities in networks. Proc. Natl. Acad. Sci. USA 101(9), 2658–2663 (2004)

    Article  Google Scholar 

  76. E. Ravasz, A.L. Somera, D.A. Mongru, Z.N. Oltvai, A.L. Barabási, Hierarchical organization of modularity in metabolic networks. Science 297(5586), 1551–1555 (2002)

    Article  Google Scholar 

  77. J. Reichardt, S. Bornholdt, Statistical mechanics of community detection. Phys. Rev. E 74(1), 016110 (2006)

    Article  MathSciNet  Google Scholar 

  78. M. Rosvall, C.T. Bergstrom, Mapping change in large networks. PLoS ONE 5(1), e8694 (2010). doi:10.1371/journal.pone.0008694

    Article  Google Scholar 

  79. M. Saerens, F. Fouss, L. Yen, P. Dupont, The principal components analysis of a graph, its relationships to spectral clustering, in Proceedings of the 15th European Conference on Machine Learning (ECML 2004). Lecture Notes in Artificial Intelligence (Springer, 2004), pp. 371–383

    Google Scholar 

  80. J. Scott, Social Network Analysis: A Handbook, 2nd edn. (SAGE Publications, 2000), 240 p.

    Google Scholar 

  81. M. Seifi, J.-L. Guillaume, I. Junier, J.-B. Rouquier, S. Iskrov, Stable community cores in complex networks, in Proceedings of the 3rd Workshop on Complex Networks (CompleNet 2012), 2012

    Google Scholar 

  82. J. Shi, J. Malik, Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (1997)

    Google Scholar 

  83. J. Sun, C. Faloutsos, S. Papadimitriou, P. Yu, Graphscope: parameter-free mining of large time-evolving graphs, in Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, New York, NY, 2007), pp. 687–696

    Google Scholar 

  84. L. Tang, H. Liu, J. Zhang, Z. Nazeri, Community evolution in dynamic multi-mode networks, in International Conference on Knowledge Discovery and Data Mining, p. 8, 2008

    Google Scholar 

  85. C. Tantipathananandh, T. Berger-Wolf, Constant-factor approximation algorithms for identifying dynamic communities, in Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’09 (ACM, New York, NY, 2009), pp. 827–836

    Google Scholar 

  86. C. Tantipathananandh, T. Berger-Wolf, D. Kempe, A framework for community identification in dynamic social networks, in Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’07, p. 717, 2007

    Google Scholar 

  87. M. Toyoda, M. Kitsuregawa, Extracting evolution of web communities from a series of web archives, in Proceedings of the Fourteenth ACM Conference on Hypertext and Hypermedia (ACM, New York, NY, 2003), pp. 28–37

    Google Scholar 

  88. B.L. Tseng, Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, Facetnet: a framework for analyzing communities and their evolutions in dynamic networks. Soc. Network 685–694 (2008)

    Google Scholar 

  89. B.L. Tseng, Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, Analyzing communities and their evolutions in dynamic social networks. ACM Trans. Knowl. Discov. Data 3(2), 1–31 (2009)

    Google Scholar 

  90. U. von Luxburg, A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  91. Q. Wang, Détection de communautés recouvrantes dans des réseaux de terrain dynamiques. PhD thesis, Docteur de l’Ecole Normale Supérieure de Lyon, 2012

    Google Scholar 

  92. Y. Wang, B. Wu, N. Du, Community evolution of social network: feature, algorithm and model. Sci. Tech. (60402011) (2008). arXiv:0804.4356

    Google Scholar 

  93. S. Wasserman, K. Faust, Social Network Analysis: Methods and Applications (Structural Analysis in the Social Sciences). Structural analysis in the social sciences, vol. 8, 1st edn. (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

  94. S. White, P. Smyth, A spectral clustering approach to finding communities in graphs, in SDM, pp. 43–55, 2005

    Google Scholar 

  95. T. Yang, Y. Chi, S. Zhu, Y. Gong, R. Jin, A bayesian approach toward finding communities and their evolutions in dynamic social networks, in SIAM Conference on Data Mining (SDM), 2009

    Google Scholar 

  96. W.W. Za chary, An information flow model for conflict and fission in small groups. J. Anthropologica 1(33), 452–473 (1977)

    Google Scholar 

Download references

Acknowledgement

This work is supported in part by the French National Research Agency contract DynGraph ANR-10-JCJC-0202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Aynaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Aynaud, T., Fleury, E., Guillaume, JL., Wang, Q. (2013). Communities in Evolving Networks: Definitions, Detection, and Analysis Techniques. In: Mukherjee, A., Choudhury, M., Peruani, F., Ganguly, N., Mitra, B. (eds) Dynamics On and Of Complex Networks, Volume 2. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4614-6729-8_9

Download citation

Publish with us

Policies and ethics