Skip to main content

Network-Based Information Filtering Algorithms: Ranking and Recommendation

  • Chapter
  • First Online:
Dynamics On and Of Complex Networks, Volume 2

Abstract

This chapter gives an overview of applications of random walks to information filtering, focusing on the tasks of ranking and recommendation in particular. Despite the amount of work done in these two directions, multiple important research challenges still remain open. Due to the massive amounts of available data, scalability of algorithms is of critical importance. Even when full computation is possible, one can think of potential approaches to update the output gradually when new data arrives. To achieve that, one can use or learn from perturbation theory which is a well-known tool in physics. It has been seen that results based on random walks often correlate strongly with mere popularity (represented by degree) of nodes in the network. Such bias toward popularity may be beneficial for an algorithm’s accuracy but it may also narrow one’s view of the given system and perhaps create a self reinforcing loop further boosting popularity of already popular nodes. Thus it is needed that information filtering algorithms converge less to the center of the given network. Random walks biased by node centrality or time information about nodes and links could provide a solution to this problem. As a beneficial side effect, this line of research could yield algorithms pointing us to fresh and promising content instead of highlighting old victors over and over again.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U. Hanani, B. Shapira, P. Shoval, Information filtering: Overview of issues, research and systems. User Model. User Adapted Interact. 11, 203–259 (2001)

    Article  MATH  Google Scholar 

  2. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. (Springer, New York, 2001)

    MATH  Google Scholar 

  3. I.H. Witten, E. Frank, M.A. Hall, Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. (Morgan Kaufmann/Elsevier, San Francisco, 2011)

    Google Scholar 

  4. M. Franceschet, PageRank: Standing on the shoulders of giants. Comm. ACM 54, 92–101 (2011)

    Article  Google Scholar 

  5. S. Brin, L. Page, The anatomy of a large-scale hypertextual web search engine. Comput. Network ISDN Syst. 30, 107–117 (1998)

    Article  Google Scholar 

  6. R. Burke, Hybrid web recommender systems, in The Adaptive Web: Methods and Strategies of Web Personalization, ed. by P. Brusilovsky, A. Kobsa, W. Nejdl (Springer, Heidelberg, 2007)

    Google Scholar 

  7. L. Costa, F. da, F.A. Rodrigues, G. Travieso, P.R. Villas Boas, Characterization of complex networks: A survey of measurements. Adv. Phys. 56, 167–242 (2007)

    Google Scholar 

  8. A. Barrat, M. Barthelemy, A. Vespignani, Dynamical Processes on Complex Networks (Cambridge University Press, New York, 2008)

    Book  MATH  Google Scholar 

  9. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Huang, Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  10. S. Wasserman, K. Faust, Social Network Analysis: Methods and Applications (Cambridge University Press, Cambridge, 1994)

    Book  Google Scholar 

  11. P. Bonacich, P. Lloyd, Eigenvector-like measures of centrality for asymmetric relations. Soc. Network 23, 191–201 (2001)

    Article  Google Scholar 

  12. P. Berkhin, A survey on PageRank computing. Internet Math. 2, 73–120 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. N. Perra, S. Fortunato, Spectral centrality measures in complex networks. Phys. Rev. E 78, 036107 (2008)

    Article  MathSciNet  Google Scholar 

  14. Y. Ding, E. Yan, A. Frazho, J. Caverlee, PageRank for ranking authors in co-citation networks. J. Am. Soc. Inform. Sci. Tech. 60, 2229–2243 (2009)

    Article  Google Scholar 

  15. A. Hotho, R. Jäschke, C. Schmitz, G. Stumme, Information retrieval in folksonomies: search and ranking, in Lecture Notes in Computer Science, vol. 4011, ed. by Y. Sure, J. Domingue, pp. 84–95 (2006)

    Google Scholar 

  16. A. Agarwal, S. Chakrabarti, S. Aggarwal, Learning to rank networked entities, in Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’06) (ACM, New York, 14–23 2006)

    Google Scholar 

  17. A.N. Langville, C.D. Meyer, Google’s PageRank and Beyond: The Science of Search Engine Rankings (Princeton University Press, Princeton, 2006)

    Google Scholar 

  18. L. Bing, Web Data Mining: Exploring Hyperlinks, Contents and Usage Data (Springer, Heidelberg, 2007)

    Google Scholar 

  19. T.H. Haveliwala, Efficient computation of PageRank. Technical Report, Stanford University Database Group, http://ilpubs.stanford.edu:8090/386/ (1999)

  20. A. Cheng, E. Friedman, Manipulability of PageRank under Sybil strategies, in Proceedings of the First Workshop on the Economics of Networked Systems (NetEcon06), Ann Arbor, 2006

    Google Scholar 

  21. G. Ghoshal, A.-L. Barabsi, Ranking stability and super-stable nodes in complex networks. Nat. Comm. 2, 394 (2011)

    Article  Google Scholar 

  22. R. Baeza-Yates, P. Boldi, C. Castillo, Generalizing PageRank: damping functions for link-based ranking algorithms, in Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’06) (ACM, New York, 2006)

    Google Scholar 

  23. S.D. Kamvar, M.T. Schlosser, H. Garcia-Molina, The eigentrust algorithm for reputation management in P2P networks, in Proceedings of the 12th International Conference on World Wide Web (WWW’03) (ACM, New York, 2003)

    Google Scholar 

  24. G.D. Paparo, M.A. Martin-Delgado, Google in a quantum network. Sci. Rep. 2(444), arXiv.org/abs/1112.2079. http://www.nature.com/srep/2012/120608/srep00444/full/srep00444.html?WT.mc_id=FBK_SciReports (2012)

  25. J.M. Kleinberg, Authoritative sources in a hyperlinked environment. J. ACM 46, 604–632 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. H. Deng, M.R. Lyu, I. King, A generalized Co-HITS algorithm and its application to bipartite graphs, in Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’09) (ACM, New York, 2009)

    Google Scholar 

  27. A.N. Langville, C.D. Meyer, A survey of eigenvector methods for web information retrieval. SIAM Rev. 47, 135–161 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. P. Chen, H. Xie, S. Maslov, S. Redner, Finding scientific gems with Google’s PageRank algorithm. J. Informetrics 1, 8–15 (2007)

    Article  Google Scholar 

  29. S. Maslov, S. Redner, Promise and pitfalls of extending Google’s PageRank algorithm to citation networks. J. Neurosci. 28, 11103–11105 (2008)

    Article  Google Scholar 

  30. M. Medo, G. Cimini, S. Gualdi, Temporal effects in the growth of networks. Phys. Rev. Lett. 107, 238701 (2011)

    Article  Google Scholar 

  31. F. Radicchi, S. Fortunato, A. Vespignani, Citation networks, in Models of Science Dynamics, Understanding Complex Systems, ed. by A. Scharnhorst, et al. (Springer, Berlin Heidelberg, 2012)

    Google Scholar 

  32. D. Walker, H. Xie, K.K. Yan, S. Maslov, Ranking scientific publications using a model of network traffic. J. Stat. Mech. 6, P06010 (2007)

    Article  Google Scholar 

  33. J. Bollen, M.A. Rodriguez, H. Van de Sompel, J. Status. Scientometrics 69, 669–687 (2006)

    Article  Google Scholar 

  34. B. Gonzlez-Pereiraa, V.P. Guerrero-Bote, F. Moya-Anegn, A new approach to the metric of journals scientific prestige: The SJR indicator. J. Informetrics 4, 379–391 (2010)

    Article  Google Scholar 

  35. F. Radicchi, S. Fortunato, B. Markines, A. Vespignani, Diffusion of scientific credits and the ranking of scientists. Phys. Rev. E 80, 056103 (2009)

    Article  Google Scholar 

  36. F. Radicchi, Who is the best player ever? A complex network analysis of the history of professional tennis. PLoS ONE 6, e17249 (2011)

    Google Scholar 

  37. E. Yan, Y. Ding, Discovering author impact: A PageRank perspective. Inform. Process. Manag. 47, 125–134 (2011)

    Article  Google Scholar 

  38. S. Allesina, M. Pascual, Googling food webs: can an eigenvector measure species’ importance for coextinctions? PLoS Comput. Biol. 5, e1000494 (2009)

    MathSciNet  Google Scholar 

  39. L. Lü, Y.-C. Zhang, C.H. Yeung, T. Zhou, Leaders in social networks, the delicious case. PLoS ONE 6, e21202 (2011)

    Article  Google Scholar 

  40. A. Stojmirović, Y.-K. Yu, Information flow in interaction networks. J. Comput. Biol. 14, 1115–1143 (2007)

    Article  MathSciNet  Google Scholar 

  41. P.G. Doyle, J.L. Snell, Random walks and electric networks. Carus Mathematical Monographs, vol. 22 (Mathematical Association of America, Washington, 1984)

    Google Scholar 

  42. M.E.J. Newman, A measure of betweenness centrality based on random walks. Soc. Network 27, 39–54 (2005)

    Article  Google Scholar 

  43. G.-L. Lin, H. Peng, Q.-L. Ma, J. Wei, J.-W. Qin, Improving diversity in Web search results re-ranking using absorbing random walks, in Proceedings of the International Conference on Machine Learning and Cybernetics (ICMLC’10) (IEEE, 2116–2421 2010)

    Google Scholar 

  44. S.P. Borgatti, Centrality and network flow. Soc. Network 27, 55–71 (2005)

    Article  Google Scholar 

  45. A.-M. Kermarrec, E. Le Merrer, B. Sericola, G. Trdan, Second order centrality: Distributed assessment of nodes criticity in complex networks. Comput. Comm. 34, 619–628 (2011)

    Article  Google Scholar 

  46. S. Gualdi, M. Medo, Y.-C. Zhang, Influence, originality and similarity in directed acyclic graphs. EPL 96, 18004 (2011)

    Article  Google Scholar 

  47. J.B. Schafer, J.A. Konstan, J. Riedl, E-commerce recommendation applications. Data Min. Knowl. Discov. 5, 115–153 (2001)

    Article  MATH  Google Scholar 

  48. G. Adomavicius, A. Tuzhilin, Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17, 734–749 (2005)

    Article  Google Scholar 

  49. F. Ricci, L. Rokach, B. Shapira, P.B. Kantor (eds.), Recommender Systems Handbook (Springer, New York, 2011)

    MATH  Google Scholar 

  50. L. Lü, M. Medo, C.H. Yeung, Y.-C. Zhang, Z.-K. Zhang, T. Zhou, Recommender systems. Phys. Rep. 519, 1–49. arXiv.org/abs/1202.1112 (2012)

  51. L. Lü, T. Zhou, Link prediction in complex networks: a survey. Phys. A 390, 1150–1170 (2011)

    Article  Google Scholar 

  52. F. Fouss, A. Pirotte, J.-M. Renders, M. Saerens, Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Trans. Knowl. Data Eng. 19, 355–369 (2007)

    Article  Google Scholar 

  53. W. Liu, L. Lü, Link prediction based on local random walk. EPL 89, 58007 (2010)

    Article  Google Scholar 

  54. S. Gualdi, C.H. Yeung, Y.-C. Zhang, Tracing the evolution of physics on the backbone of citation networks. Phys. Rev. E 84, 046104 (2011)

    Article  Google Scholar 

  55. H. Yildirim, M.S. Krishnamoorthy, A random walk method for alleviating the sparsity problem in collaborative filtering, in Proceedings of the 2008 ACM Conference on Recommender Systems (RecSys’08) (ACM, New York, 2008)

    Google Scholar 

  56. T. Zhou, J. Ren, M. Medo, Y.-C. Zhang, Bipartite network projection and personal recommendation. Phys. Rev. E 76, 046115 (2007)

    Article  Google Scholar 

  57. T. Zhou, L.-L. Jinag, R.-Q. Su, Y.-C. Zhang, Effect of initial configuration on network-based recommendation. EPL 81, 58004 (2008)

    Article  Google Scholar 

  58. T. Zhou, Z. Kuscsik, J.-G. Liu, M. Medo, J.R. Wakeling, Y.-C. Zhang, Solving the apparent diversity-accuracy dilemma of recommender systems. Proc. Natl. Acad. Sci. USA 107, 4511–4515 (2010)

    Article  Google Scholar 

  59. M. Blattner, B-rank: A top N recommendation algorithm, in Proceedings of the 1st International Multi-Conference on Complexity, Informatics and Cybernetics, pp. 336–341, 2010

    Google Scholar 

  60. Y.-C. Zhang, M. Medo, J. Ren, T. Zhou, T. Li, F. Yang, Recommendation model based on opinion diffusion. EPL 80, 68003 (2007)

    Article  MathSciNet  Google Scholar 

  61. A.P. Singh, A. Gunawardana, C. Meek, A.C. Surendran, Recommendations using absorbing random walks, in Proceedings of the North East Student Colloquium on Artificial Intelligence, 2007

    Google Scholar 

  62. Y.-C. Zhang, M. Blattner, Y.-K. Yu, Heat conduction process on community networks as a recommendation model. Phys. Rev. Lett. 99, 154301 (2007)

    Article  Google Scholar 

Download references

Acknowledgement

This work was partially supported by the Swiss National Science Foundation Grant No. 200020-132253. I wish to thank a number of wonderful friends and colleagues who helped to shape many of the ideas presented here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matúš Medo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Medo, M. (2013). Network-Based Information Filtering Algorithms: Ranking and Recommendation. In: Mukherjee, A., Choudhury, M., Peruani, F., Ganguly, N., Mitra, B. (eds) Dynamics On and Of Complex Networks, Volume 2. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4614-6729-8_16

Download citation

Publish with us

Policies and ethics