Skip to main content

The Stability of a Graph Partition: A Dynamics-Based Framework for Community Detection

  • Chapter
  • First Online:
Dynamics On and Of Complex Networks, Volume 2

Abstract

Recent years have seen a surge of interest in the analysis of complex systems. This trend has been facilitated by the availability of relational data and the increasingly powerful computational resources that can be employed for their analysis. A unifying concept in the study of complex systems is their formalisation as networks comprising a large number of non-trivially interacting agents. By considering a network perspective, it is hoped to gain a deepened understanding of system-level properties beyond what could be achieved by focussing solely on the constituent units. Naturally, the study of real-world systems leads to highly complex networks and a current challenge is to extract intelligible, simplified descriptions from the network in terms of relevant subgraphs (or communities), which can provide insight into the structure and function of the overall system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the continuous case, trace R(t) is monotonically decreasing with time. To prove this, note that \(P(t) = {D}^{-1/2}\exp (-t\mathcal{L}){D}^{1/2}\) and \(d(\text{trace }R(t))/dt = -\text{trace }{H}^{T}\Pi {D}^{-1/2}\) \({\mathcal{L}}^{1/2}\exp (-t\mathcal{L}){\mathcal{L}}^{1/2}{D}^{1/2}H = -\text{trace }{H}^{T}{D}^{1/2}{\mathcal{L}}^{1/2}\exp (-t\mathcal{L}){\mathcal{L}}^{1/2}{D}^{1/2}H/2m\). This is obviously strictly negative since the matrix exp( − ) is symmetric positive definite.

  2. 2.

    In particular cases, such as a bipartite graph, trace R s can oscillate in the discrete-time case, indicating poor communities or even “anti-communities” with a rapid alternance of random walkers between communities. We therefore take the lowest point of the R s over the interval as the quality function.

  3. 3.

    Dataset taken from http://www.termoenergetica.upc.edu/marti/index.htm.

  4. 4.

    See http://de.wikipedia.org/wiki/Stromnetz%5C;#Netzbetreiber.

  5. 5.

    For a map of the French regional electrical companies see http://www.rte-france.com/fr/nous-connaitre/qui-sommes-nous/organisation-et-gouvernance/le-siege-et-les-unites-regionales.

  6. 6.

    see http://en.wikipedia.org/wiki/Autonomous_system_(Internet).

  7. 7.

    http://www.caida.org/data/active/as_taxonomy/.

References

  1. M.E.J. Newman, M. Girvan, Phys. Rev. E 69(2), 026113 (2004)

    Article  Google Scholar 

  2. M.E.J. Newman, Proc. Natl. Acad. Sci. 103(23), 8577 (2006). DOI 10.1073/pnas. 0601602103

    Article  Google Scholar 

  3. H.A. Simon, Proc. Am. Phil. Soc. 106(6), 467 (1962)

    Google Scholar 

  4. S. Fortunato, Phys. Rep. 486(3–5), 75 (2010). DOI 10.1016/j.physrep.2009.11.002

    Article  MathSciNet  Google Scholar 

  5. J.C. Delvenne, S.N. Yaliraki, M. Barahona, Proc. Natl. Acad. Sci. 107(29), 12755 (2010). DOI 10.1073/pnas.0903215107

    Article  Google Scholar 

  6. R. Lambiotte, J.C. Delvenne, M. Barahona, Laplacian Dynamics and Multiscale Modular Structure in Networks (2009). ArXiv:0812.1770

    Google Scholar 

  7. R. Lambiotte, Multi-scale modularity and dynamics in complex networks, in Dynamics on and of Complex Networks, vol. 2: Applications to Time-Varying Dynamical Systems, ed. by A. Mukherjee, M. Choudhury, F. Peruani, N. Ganguly, B. Mitra (Springer, New York, 2013)

    Google Scholar 

  8. F. Chung, Spectral Graph Theory. No. 92 in Regional Conference Series in Mathematics (American Mathematical Society, 1997)

    Google Scholar 

  9. R. Lambiotte, R. Sinatra, J.C. Delvenne, T.S. Evans, M. Barahona, V. Latora, Phys. Rev. E 84(1), 017102 (2011)

    Article  Google Scholar 

  10. E. Le Martelot, C. Hankin, Multi-scale Community Detection using Stability Optimisation, The International Journal of Web Based Communities (IJWBC) Special Issue on Community Structure in Complex Networks, 9, to appear. (2013)

    Google Scholar 

  11. R. Lambiotte, in Proceedings of the 8th International Symposium on Modeling and Optimization in Mobile, Ad-Hoc and Wireless Networks (WiOpt 2010), University of Avignon, Avignon, 31 May–4 June 2010 (IEEE, 2010), pp. 546–553

    Google Scholar 

  12. A. Delmotte, E.W. Tate, S.N. Yaliraki, M. Barahona, Phys. Biol. 8(5), 055010 (2011)

    Article  Google Scholar 

  13. E. Simpson, Nature 163(4148), 688 (1949)

    Article  MATH  Google Scholar 

  14. A. Hirschman, Am. Econ. Rev. 54(5), 761 (1964)

    Google Scholar 

  15. A. Renyi, in Fourth Berkeley Symposium on Mathematical Statistics and Probability, pp. 547–561, 1961

    Google Scholar 

  16. C. Tsallis, J. Stat. Phys. 52(1), 479 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Shi, J. Malik, IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888 (2000). DOI 10.1109/34.868688

    Article  Google Scholar 

  18. M. Fiedler, Czech. Math. J. 23(2), 298 (1973)

    MathSciNet  Google Scholar 

  19. M. Fiedler, Czech. Math. J. 25(4), 619 (1975)

    MathSciNet  Google Scholar 

  20. J. Reichardt, S. Bornholdt, Phys. Rev. Lett. 93(21), 218701 (2004). DOI 10.1103/ PhysRevLett.93.218701

    Article  Google Scholar 

  21. J. Reichardt, S. Bornholdt, Phys. Rev. E 74(1), 016110 (2006). DOI 10.1103/ PhysRevE.74.016110

    Article  MathSciNet  Google Scholar 

  22. V.A. Traag, P. Van Dooren, Y. Nesterov, Phys. Rev. E 84(1), 016114 (2011)

    Article  Google Scholar 

  23. P. Ronhovde, Z. Nussinov, Phys. Rev. E 80, 016109 (2009). DOI 10.1103/PhysRevE. 80.016109

    Article  Google Scholar 

  24. P. Ronhovde, Z. Nussinov, Phys. Rev. E 81(4), 046114 (2010). DOI 10.1103/ PhysRevE.81.046114

    Article  Google Scholar 

  25. R. Kannan, S. Vempala, A. Veta, in Proceedings. 41st Annual Symposium on Foundations of Computer Science, 2000, pp. 367–377, 2000

    Google Scholar 

  26. U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, D. Wagner, IEEE Trans. Knowl. Data Eng. 20(2), 172 (2008)

    Article  Google Scholar 

  27. M.E.J. Newman, Phys. Rev. E 74(3), 036104 (2006). DOI 10.1103/PhysRevE.74. 036104

    Article  MathSciNet  Google Scholar 

  28. V.D. Blondel, J.L. Guillaume, R. Lambiotte, E. Lefebvre, J. Stat. Mech. Theor Exp. 2008(10), P10008 (2008)

    Article  Google Scholar 

  29. B. Kernighan, S. Lin, Bell Syst. Tech. J. 49(2), 291 (1970)

    MATH  Google Scholar 

  30. M.T. Schaub, J.C. Delvenne, S.N. Yaliraki, M. Barahona, PLoS ONE 7(2), e32210 (2012). DOI 10.1371/journal.pone.0032210

    Article  Google Scholar 

  31. M. Meila, J. Multivariate Anal. 98(5), 873 (2007). DOI 10.1016/j.jmva.2006.11.013

    Article  MathSciNet  MATH  Google Scholar 

  32. D. Meunier, R. Lambiotte, E.T. Bullmore, Modular and hierarchically modular organization of brain networks. Front. Neurosci. 4:200. doi: 10.3389/fnins.2010.00200 (2010)

    Google Scholar 

  33. M.E.J. Newman, Phys. Rev. E 74(3) (2006)

    Google Scholar 

  34. M. Rosvall, C.T. Bergstrom, Proc. Natl. Acad. Sci. 105(4), 1118 (2008). DOI 10.1073/pnas.0706851105

    Article  Google Scholar 

  35. M.T. Schaub, R. Lambiotte, M. Barahona, Encoding dynamics for multiscale community detection: Markov time sweeping for the map equation. Phys. Rev. E. 86, pp. 026112. American Physical Society. DOI 10.1103/PhysRevE.86.026112 (2012)

    Google Scholar 

  36. A. Lancichinetti, S. Fortunato, F. Radicchi, Phys. Rev. E 78(4), 046110 (2008). DOI 10.1103/PhysRevE.78.046110

    Article  Google Scholar 

  37. A. Lancichinetti, S. Fortunato, Phys. Rev. E 80(1), 016118 (2009). DOI 10.1103/ PhysRevE.80.016118

    Article  Google Scholar 

  38. L. Danon, A. Díaz-Guilera, A. Arenas, J. Stat. Mech. Theor Exp. 2006(11), P11010 (2006)

    Article  Google Scholar 

  39. B. Karrer, M.E.J. Newman, Phys. Rev. E 83(1), 016107 (2011). DOI 10.1103/ PhysRevE.83.016107

    Article  MathSciNet  Google Scholar 

  40. M. Rosas-Casals, S. Valverde, R.V. Solé, Int. J. Bifurcat. Chaos 17(7), 2465 (2007)

    Article  MATH  Google Scholar 

  41. R.V. Solé, M. Rosas-Casals, B. Corominas-Murtra, S. Valverde, Phys. Rev. E 77(2), 026102 (2008). DOI 10.1103/PhysRevE.77.026102

    Article  Google Scholar 

  42. Y. Hyun, B. Huffaker, D. Andersen, E. Aben, M. Luckie, K. Claffy, C. Shannon, The IPv4 Routed /24 AS Links Dataset - Data from 3.1.2012. URL http://www.caida.org/data/active/ipv4_routed_topology_aslinks_dataset.xml

  43. T.S. Evans, R. Lambiotte, Phys. Rev. E 80(1), 016105 (2009)

    Article  Google Scholar 

  44. P.J. Mucha, T. Richardson, K. Macon, M.A. Porter, J.P. Onnela, Science 328(5980), 876 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

J.-C. D. acknowledges support from the grant “Actions de recherche concertées—Large Graphs and Networks” of the Communauté Française de Belgique, the EULER project (Grant No.258307) part of the Future Internet Research and Experimentation (FIRE) objective of the Seventh Framework Programme (FP7) and from the Belgian Network DYSCO (Dynamical Systems, Control, and Optimization) funded by the Interuniversity Attraction Poles Programme initiated by the Belgian State Science Policy Office. S.N.Y. and M.B. acknowledge funding from grant EP/I017267/1 from the EPSRC (Engineering and Physical Sciences Research Council) of the UK under the Mathematics Underpinning the Digital Economy programme and from the Office of Naval Research (ONR) of the USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Charles Delvenne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Delvenne, JC., Schaub, M.T., Yaliraki, S.N., Barahona, M. (2013). The Stability of a Graph Partition: A Dynamics-Based Framework for Community Detection. In: Mukherjee, A., Choudhury, M., Peruani, F., Ganguly, N., Mitra, B. (eds) Dynamics On and Of Complex Networks, Volume 2. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4614-6729-8_11

Download citation

Publish with us

Policies and ethics