Skip to main content

Assessing Bioavailability of Hydrophobic Organic Compounds and Metals in Sediments Using Freely Available Porewater Concentrations

  • Chapter
  • First Online:
Processes, Assessment and Remediation of Contaminated Sediments

Part of the book series: SERDP ESTCP Environmental Remediation Technology ((SERDP/ESTCP,volume 6))

Abstract

Sediments are the ultimate sinks for most hydrophobic organic compounds (HOCs) and metals in aqueous systems. These contaminants can then pose a long-term risk to organisms that dwell or interact with the sediments or to higher organisms through the food chain. The starting point for the assessment of sediment toxicity or effects is bulk contaminant concentrations normalized by sediment mass (Chapman et al., 1999). The values are relatively easy to obtain and are useful as an initial screening tool to assess contamination. These values do not take into account important properties of the sediment, such as the concentration of sulfides, iron oxides, and organic contents, which greatly affect metals availability in sediments, or organic sequestering phases, which can reduce organic chemical availability. Hence, the toxic level of contaminants derived from bulk sediment loading has been proven to vary significantly among different sediments (Di Toro et al., 1990; Chapman et al., 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

REFERENCES

  • Accardi-Dey A, Gschwend PM. 2002. Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments. Environ Sci Technol 36:21–29.

    Article  CAS  Google Scholar 

  • Allen HE, Fu G, Deng B. 1993. Analysis of acid volatile sulfide (AVS) and simultaneously extracted metals (SEMs) for the estimation of potential toxicity in aquatic sediments. Environ Toxicol Chem 12:1441–1453.

    Article  CAS  Google Scholar 

  • Ankley GT, Di Toro DM, Hansen DJ, Berry WJ. 1996. Technical basis and proposal for deriving sediment quality criteria for metals. Environ Toxicol Chem 15:2056–2066.

    Article  CAS  Google Scholar 

  • Baker JE, Capel PD, Elsenrelch SJ. 1996. Influence of colloids on sediment-water partition coefficients of polychlorobiphenyl congeners in natural waters. Environ Sci Technol 20:1136–1143.

    Article  Google Scholar 

  • Berry WJ, Boothman WS, Serbst JR, Edwards PA. 2004. Predicting the toxicity of chromium in sediments. Environ Toxicol Chem 23:2981–2992.

    Article  Google Scholar 

  • Berry WJ, Hansen DJ, Mahony DL, Robson DM, Di Toro DM, Shipley BP, Rogers B, Corbin JM, Boothman WS. 1996. Predicting the toxicity of metal spiked laboratory sediments using acid-volatile sulfide and interstitial water normalizations. Environ Toxicol Chem 15:2067–2079.

    Article  CAS  Google Scholar 

  • Bufflap SE, Allen HE. 1995. Sediment porewater collection methods for trace metal analysis: A review. Wat Res 29:165–177.

    Article  CAS  Google Scholar 

  • Burkhard LP. 2000. Estimating dissolved organic carbon partition coefficients for nonionic organic chemicals. Environ Sci Technol 34:4663–4668.

    Article  CAS  Google Scholar 

  • Burton ED, Bush RT, Sullivan LA. 2006. Acid-volatile sulfide oxidation in coastal flood plain drains: Iron-sulfur cycling. Environ Sci Technol 40:1217–1222.

    Article  CAS  Google Scholar 

  • Carr RS, Chapman DC. 1995. Comparison of methods for conducting marine and estuarine sediment porewater toxicity tests: Extraction, storage, and handling techniques. Arch Environ Contam Toxicol 28:69–77.

    Article  CAS  Google Scholar 

  • Chapman PM, Wang F, Adams WJ, Green A. 1999. Appropriate applications of sediment quality values for metals and metalloids. Environ Sci Technol 33:3937–3941.

    Article  CAS  Google Scholar 

  • Chapman PM, Wang F, Janssen C, Perssone G, Allen HE. 1998. Ecotoxicology of metals in aquatic sediments binding and release, bioavailability, risk assessment, and remediation. Can J Fish Aquat Sci 55:2221–2243.

    Article  CAS  Google Scholar 

  • Chapman PM, Wang F. 2001. Assessing sediment contamination in estuaries. Envrion Toxicol Chem 20:3–22.

    Article  CAS  Google Scholar 

  • Chen Z, Mayer LM. 1999. Mechanisms of Cu solubilization during deposit feeding. Environ Sci Technol 32:770–775.

    Article  Google Scholar 

  • Clarisse O, Hintlemann H. 2005. Measurements of dissolved methylmercury of dissolved methylmercury in natural waters using diffusive gradients in thin film (DGT). J Environ Monitor 8:1242–1247.

    Article  Google Scholar 

  • Cooper DC, Morse JW. 1998. Extractability of metal sulfide minerals in acidic solutions: Application to environmental studies of trace metal contamination within anoxic sediments. Environ Sci Technol 32:1076–1078.

    Article  CAS  Google Scholar 

  • Cornelissen G, Pettersen A, Broman D, Mayer P, Breedveld GD. 2008. Field testing of equilibrium passive samplers to determine freely dissolved native polycyclic aromatic hydrocarbon concentrations. Environ Toxicol Chem 27:499–508.

    Article  CAS  Google Scholar 

  • Dean JR, Scott WC. 2004. Recent developments in assessing the bioavailability of persistent organic pollutants in the environment. Trends Anal Chem 23:609–618.

    Article  CAS  Google Scholar 

  • Di Toro DM, Mahony JD, Hansen DJ, Scott KJ, Hicks MB, Mayr SM, Redmond MS. 1990. Toxicity of cadmium in sediments: The role of acid volatile sulfide. Environ Toxicol Chem 9:1487–1502.

    Article  Google Scholar 

  • Di Toro DM, Zarba CS, Hansen DJ, Berry WJ, Swartz RC, Cowan CE, Pavlou SP, Allen HE, Thomas NA, Paquin PR, Zarba CS, Hansen DJ, Berry WJ, Swartz RC. 1991. Technique basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ Toxicol Chem 10:1541–1583.

    Article  Google Scholar 

  • Di Toro DM, Mahony JD, Hansen DJ, Scott KJ, Carlson AR, Ankley GT. 1992. Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environ Sci Technol 26:96–101.

    Article  Google Scholar 

  • Di Toro DM, Allen HE, Bergman HL, Meyer JS, Paquin PR, Santore RC. 2001. Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ Toxicol Chem 20:2383–2396.

    Article  Google Scholar 

  • Di Toro DM, McGrath JA, Hansen DJ. 2000a. Technical basis for narcotic chemicals and polycyclic aromatic hydrocarbon criteria. I. Water and tissue. Environ Toxicol Chem 19:1951–70.

    Article  Google Scholar 

  • Di Toro DM, McGrath JA. 2000b. Technical basis for narcotic chemicals and polycyclic aromatic hydrocarbon criteria. II. Mixtures and sediments. Environ Toxicol Chem 19:1971–1982.

    Article  Google Scholar 

  • Di Toro DM, McGrath JA, Hansen DJ, Berry WJ, Paquine PR. 2005. Predicting sediment metal toxicity using a sediment biotic ligand model: Methodology and initial application. Environ Toxicol Chem 24:2410–2427.

    Article  Google Scholar 

  • Docekalová H, Diviš P. 2005. Application of diffusive gradient in thin films technique (DGT) to measurement of mercury in aquatic systems. Talanta 65:1174–1178.

    Article  Google Scholar 

  • Ernstberger H, Zhang H, Tye A, Young S, Davison W. 2005. Desorption kinetics of Cd, Zn and Ni measured in soils by DGT. Environ Sci Tech 39:1591–1597.

    Article  CAS  Google Scholar 

  • Fernandez LA, MacFarlane JK, Tcaciuc AP, Gschwend PM. 2009a. Measurement of freely dissolved PAH concentrations in sediment beds using passive sampling with low density polyethylene strips. Environ Sci Technol 43:1430–1436.

    Article  CAS  Google Scholar 

  • Fernandez LA, Harvey CF, Gschwend PM. 2009b. Using performance reference compounds in polyethylene passive samplers to deduce sediment porewater concentrations for numerous target chemicals. Environ Sci Technol 43:8888–8894.

    Article  CAS  Google Scholar 

  • Friedman CL, Burgess RM, Perron MM, Cantwell MG, Ho KT, Lohmann R. 2009. Comparing polychaete and polyethylene to assess sediment resuspension effects on PCB bioavailability. Environ Sci Technol 43:2865–2870.

    Article  CAS  Google Scholar 

  • Ghosh U, Gillette JS, Luthy RG, Zare RN. 2000. Microscale location, characterization, and association of polycyclic aromatic hydrocarbons on harbor sediment particles. Environ Sci Technol 34:1729–1736.

    Article  CAS  Google Scholar 

  • Greenwood R, Mills G, Vrana B. 2007. Passive sampling techniques in environmental monitoring. Comprehensive Analytical Chemistry. Volume 48. Elsevier, Oxford, United Kingdom.

    Book  Google Scholar 

  • Gschwend PM, MacFarlane JK, Reible DD, Lu X, Hawthorne SB, Nakles DV, Thompson T. 2011. Comparison of polymeric samplers for accurately assessing PCBs in porewaters. Environ Toxicol Chem 30:1288–1296.

    Article  CAS  Google Scholar 

  • Hawthorne SB, Azzolina NA, Neuhauser EF, Kreitinger JP.2007. Predicting bioavailability of sediment polycyclic aromatic hydrocarbons to Hyalella azteca using equilibrium partitioning, supercritical fluid extraction, and porewater concentrations. Environ Sci Technol 41:6297–6304.

    Article  CAS  Google Scholar 

  • Hansen DJ, Berry WJ, Mahony JD, Boothman WS, Di Toro DM, Robson DL, Ankley GT, Ma D, Yan Q, Pesch CE. 1996. Predicting the toxicity of metal contaminated field sediments using interstitial concentration of metals and acid volatile sulfide normalizations. Environ Toxicol Chem 15:2080–2094.

    Article  CAS  Google Scholar 

  • Harper PM, Davison W, Tych W, Zhang H. 1998. Kinetics of metal exchange between solids and solutions in sediments and soils interpreted from DGT measured fluxes. Geochim Cosmochim Acta 62:2757–2770.

    Article  CAS  Google Scholar 

  • Harper PM, Davison W, Tych W. 2000. DIFS-a modeling and simulation tool for DGT induced trace metal remobilization in sediments and soils. Environ Model Softw 15:55–66.

    Article  Google Scholar 

  • Hong YS, Kinney KA, Reible DD. 2011a. Acid volatile sulfides oxidation and metals (Mn, Zn) release upon sediment resuspension: Laboratory experiment and model development. Environ Toxicol Chem 30:564–575.

    Article  CAS  Google Scholar 

  • Hong YS, Kinney AK, Reible DD. 2011b. Effect of pH and salinity on sediment metals release and early diagenesis. Environ Toxicol Chem 30:1775–1784.

    Article  CAS  Google Scholar 

  • Huckins JN, Tubergen MW, Manuweera GK. 1990. Semipermeable membrane devices containing model lipid: A new approach to monitoring the bioavailability of lipophilic contaminants and estimating their bioconcentration potential. Chemosphere 20:533–552.

    Article  CAS  Google Scholar 

  • Huckins JN, Petty JD, Lebo JA, Almeida FV, Booij K, Alvarez DA, Cranor WL, Clark RC, Mogensen BB. 2002. Development of the permeability/performance reference compound approach for in situ calibration of seimpermeable membrane devices. Environ Sci Technol 36:85–91.

    Article  CAS  Google Scholar 

  • Jager T, Antón Sánchez FA, Muijs B, Van der Velde EG, Postuma L. 2000. Toxicokinetics of polycyclic aromatic hydrocarbons in Eiseniaandrei (Oligochaeta) using spiked soil. Environ Toxicol Chem 19:953–961.

    CAS  Google Scholar 

  • Jonker MTO, Koelmans AA. 2001. Polyoxymethylene solid-phase extraction as a partitioning method for hydrophobic organic chemicals in sediment and soot. Environ Sci Technol 35:3742–3749.

    Article  CAS  Google Scholar 

  • Jonker MTO, Koelmans AA. 2002. Sorption of polycyclic aromatic hydrocarbons and polychlorinaed biphenyls to soot and soot-like materials in the aqueous environment: Mechanistic considerations. Environ Sci Technol 36:3725–3734.

    Article  CAS  Google Scholar 

  • Kan AT, Fu G, Hunter M, Chen W, Ward CH, Tomson MB. 1998. Irreversible sorption of neutral hydrocarbons to sediments: Experimental observations and model predictions. Environ Sci Technol 32:892–902.

    Article  CAS  Google Scholar 

  • Karickhoff SM, Brown DS, Scott TA. 1979. Sorption of hydrophobic pollutants on natural sediment. Water Res 13:241–248.

    Article  CAS  Google Scholar 

  • Kraaij R, Mayer P, Busser FJM, Bolscher MVH, Seinen W, Tolls J. 2003. Measured pore-water concentrations make equilibrium partitioning work-a data analysis. Environ Sci Technol 37:268–274.

    Article  CAS  Google Scholar 

  • Lampert D, Lu X, Reible D. 2013. Long-term PAH monitoring results from the Anacostia River active capping demonstration using polydimethylsiloxane (PDMS) fibers, Environmental Science: Processes and Impacts 15:554–562.

    Google Scholar 

  • Lake JL, Rublinstein NI, Lee HHL, Lake CA, Heltshe J, Pavignana S. 1990. Equilibrium partitioning and bioaccumulation of sediment-associated contaminants by infaunal organisms. Environ Toxicol Chem 9:1095–1106.

    Article  CAS  Google Scholar 

  • Lee BG, Griscom SB, Lee JS, Choi HJ, Koh CH, Luoma SN, Fisher NS. 2000. Influences of dietary uptake and relative sulfides on metal bioavailability from aquatic sediments. Sci 287:282–284.

    Article  CAS  Google Scholar 

  • Lehto NJ, SochaczewskiŁ, Davison W, Tych W, Zhang H. 2008. Quantitative assessment of soil parameter (Kd and Tc) estimation using DGT measurements and the 2 D DIFS model. Chemosphere 71:795–801.

    Article  CAS  Google Scholar 

  • Li W, Wang F, Zhang W, Evans D. 2009.Measurement of stable and radioactive cesium in natural waters by the diffusive gradients in thin films technique with new selective binding phases. Analy Chem 81:5889–5895.

    Article  CAS  Google Scholar 

  • Li W, Zhao J, Li C, Kiser S, Jack CR. 2006. Speciation measurements of uranium in alkaline waters using diffusive gradients in thin films technique. Analy Chim Acta 575:274–280.

    Article  CAS  Google Scholar 

  • Liber K, Call DJ, Markee TP, Schmude JL, Balcer MD, Whiteman FW, Ankley GT. 1996. Effects of acid volatile sulfide on zinc bioavailability and toxicity to benthic macroinvertebrates: A spiked sediment field experiment. Environ Toxicol Chem 15:2113–2125.

    Article  CAS  Google Scholar 

  • Lofts S, Spurgeon DJ, Svendsen C, Tipping E. 2004. Deriving soil critical limits for Cu, Zn, Cd, and Pb: A method based on free ion concentrations. Environ Sci Technol 38:3623–3631.

    Article  CAS  Google Scholar 

  • Lu XX, Reible DD, Fleeger JW, Chai YZ. 2003. Bioavailability of desorption–resistant phenanthrene to Oligochaete, Ilyodrilustempletoni. Environ Toxicol Chem 22:153–160.

    CAS  Google Scholar 

  • Lu XX. 2003. Bioavailability and Bioaccumulation of Sediment-Associated Desorption-Resistant Fraction of Polycyclic Aromatic Hydrocarbon Contaminants. PhD Thesis, Louisiana State University, Baton Rouge, LA, USA.

    Google Scholar 

  • Lu XX, Reible DD, Fleeger JW. 2006. Bioavailability of polycyclic aromatic hydrocarbons in field-contaminated Anacostia river (Washington DC) sediment. Environ Toxicol Chem 25:2869–2874.

    Article  CAS  Google Scholar 

  • Lu XX, Skwarski A, Drake B, Reible DD. 2011. Predicting bioavailability of PAHS and PCBS with porewater concentrations measured by solid-phase micro-extraction fibers. Environ Toxicol Chem 30:1009–1116.

    Article  Google Scholar 

  • Maruya KA, Zeng EY, Tsukada D, Bay SM. 2009. A passive sampler based on solid-phase microextraction for quantifying hydrophobic organic contaminants in sediment porewater. Environ Toxicol Chem 28:733–740.

    Article  CAS  Google Scholar 

  • Maruya KA, Landrum PF, Burgess RM, Shine JP. 2011. Incorporating contaminant bioavailability into sediment quality assessment frameworks. Integrated Environ Assess Manag 8:659–673.

    Article  Google Scholar 

  • Mason R, Bloom N, Cappellino S, Gill G, Benoit J, Dobbs C. 1998. Investigation of porewater sampling methods for mercury and methylmercury. Environ Sci Tech 32:4031–4040.

    Article  CAS  Google Scholar 

  • Mayer PW, Vaes WHJ, Wijnker F, Legierse KCH, Kraaij R, Tolls J, Hermens JLM. 2000. Sensing dissolved sediment porewater concentrations of persistent and bioaccumulative pollutants using disposable solid-phase microextraction fibers. Environ Sci Technol 34:5177–5183.

    Article  CAS  Google Scholar 

  • McCarty JF, Jimenez BD. 1985. Interactions between polycyclic aromatic hydrocarbons and dissolved humic material: Binding and dissociation. Environ Sci Technol 19:1072–1076.

    Article  Google Scholar 

  • McElroy AE, Farrington JW, Teal JM. 1989. Bioavailability of polycyclic aromatic hydrocarbons in the aquatic environment. In Varannsi U, ed, Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment. CRC Press, Boca Raton, FL, USA, pp 1–39.

    Google Scholar 

  • Meador JP, Stein JE, Reichert WL, Varanasi U. 1995. Bioaccumulation of polycyclic aromatic hydrocarbons by marine organisms. Rev Environ ContamToxicol 143:79–165.

    Article  CAS  Google Scholar 

  • Morel FMM.1993. Principles of Aquatic Chemistry. Wiley-Interscience, New York, NY, USA.

    Google Scholar 

  • Nowack B, Koehler S, Schulin R. 2004. Use of diffusive gradients in thin films (DGT) in undisturbed field soils. Environ Sci Technol 38:1133–1138.

    Article  CAS  Google Scholar 

  • NRC (National Research Council). 2003. Bioavailability of Contaminants in Soils and Sediments: Processes, Tools, and Applications. Committee on Bioavailability of Contaminants in Soils and Sediments, Water Science and Technology Board, Division on Earth and Life Studies, The National Academies Press, Washington, DC, USA.

    Google Scholar 

  • Reible D, Mohanty S. 2002. A levy flight-random walk model for bioturbation. Environ Toxicol Chem 21:875–881.

    CAS  Google Scholar 

  • Reible DD, Lu XX. 2011.Solid-phase microextraction field deployment and analysis – Pacific sound resources. Prepared for U.S. Army Corps of Engineers; U.S. Environmental Protection Agency.

    Google Scholar 

  • Reid BJ, Jones KC, Semple KT. 2000. Bioavailability of persistent organic pollutants in soils and sediments – A perspective on mechanisms, consequences and assessment. Environ Pollut 39:6881–6895.

    Google Scholar 

  • Resendes J, Shiu WY, Mackay D. 1992. Sensing the fugacity of hydrophobic organic chemicals in aqueous systems. Environ Sci Technol 26:2381–2387.

    Article  CAS  Google Scholar 

  • Rickard D, Morse JW. 2005. Acid volatile sulfide (AVS). Mar Chem 97:141–197.

    Article  CAS  Google Scholar 

  • Santore RC, Di Toro DM, Paquin PR, Allene HE, Meyer JS. 2001. Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia. Environ Toxicol Chem 20:2397–2402.

    CAS  Google Scholar 

  • Tessier A, Rapin F, Carignan R. 1985. Trace metals in oxic lake sediments: Possible adsorption onto iron oxyhydroxides. Geochim Cosmochim Acta 49:183–194.

    Article  CAS  Google Scholar 

  • TerLaak TL, Barendregt A, Hermens JLP. 2006. Freely dissolved porewater concentrations andsorption coefficients of PAHs in spiked, aged and field-contaminated soils. Environ Sci Technol 40:2184–2190.

    Article  CAS  Google Scholar 

  • Thakali S, Allene HE, Di Toro DM, Ponizovsky AA, Rooney CP, Zhao FJ, McGrath SP. 2006a. A terrestrial biotic ligand model. 1. Development and application to Cu and Ni toxicities to barely root elongation in soils. Environ Sci Technol 40:7085–7093.

    Article  CAS  Google Scholar 

  • Thakali S, Allene HE, Di Toro DM, Ponizovsky AA, Rooney CP, Zhao FJ, McGrath SP, Criel P, van Eeckhout H, Janssen CR, Oorts K, Smolders E. 2006b. A terrestrial biotic ligand model. 2. Application to Ni and Cu toxicities to plants, invertebrates, and microbes in soil. Environ Sci Technol 40:7094–7100.

    Article  CAS  Google Scholar 

  • Tipping E, Hurlely MA. 1992. A unifying model of cation binding by humic substances. Geochim Cosmochim Acta 56:3627–3641.

    Article  CAS  Google Scholar 

  • Tipping E. 1998. Humic ion-binding Model VI: An improved description of the interactions of protons and metal ions with humic substances. Aquat Geochem 4:3–48.

    Article  CAS  Google Scholar 

  • Trimble TA, You J, Lydy MJ. 2008. Bioavailability of PCBs from field-collected sediments: Application of Tenax extraction and matrix-SPME techniques. Chemosphere 71:337–344.

    Article  CAS  Google Scholar 

  • USEPA (U.S. Environmental Protection Agency). 2004. Methods for the Derivation of Site-Specific Equilibrium Partitioning Sediment Guidelines (ESGs) for the Protection of Benthic Organisms: Nonionic Organics. EPA/822/R/02/042. USEPA Office of Science and Technology, Washington, DC, USA.

    Google Scholar 

  • USEPA. 2005. Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks(ESBs) for the Protection of Benthic Organisms: Metal Mixtures (Cadmium, Copper, Lead, Nickel, Silver and Zinc). EPA-600-R-02-011. USEPA, Washington, DC, USA.

    Google Scholar 

  • Van Der Heijden SA, Jonker MTO. 2009. PAH bioavailability in field sediments: Comparing different methods for predicting in situ bioaccumulation. Environ Sci Technol 43:3757–3763.

    Article  Google Scholar 

  • Van der War L, Jager T, Fleuren RHLJ, Barendregt A, Sinnige TL, van Gestel CAM, Hermens JLM. 2004. Solid phase microextraction as a tool to predict internal concentrations of soil contaminants in terrestrial organisms after exposure to a field-contaminated soil. Environ Sci Technol 38:4842–4848.

    Article  Google Scholar 

  • Wang F, Chen J. 1997. Modeling sorption of trace metals on natural sediments by surface complexation model. Environ Sci Technol 31:448–453.

    Article  CAS  Google Scholar 

  • You J, Landrum PF, Lydy MJ. 2006. Comparison of chemical approaches for assessing bioavailability of sediment-associated contaminants. Environ Sci Technol 40:6348–6353.

    Article  CAS  Google Scholar 

  • You J, Landrum, PF, Trimble TA, Lydy MJ. 2007. Availability of polychlorinated biphenyls in field-contaminated sediment. Environ Toxicol Chem 26:1940–1948.

    Article  CAS  Google Scholar 

  • Zhang H, Davison W, Miller S, Tych W. 1995. In situ high resolution measurements of fluxes of Ni, Cu, Fe and Mn and concentrations of Zn and Cd in porewaters by DGT. Geochim Cosmochim Acta 59:4181–4192.

    Article  CAS  Google Scholar 

  • Zhang H, Davison W. 1995. Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution. Anal Chem 67:3391–3400.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lu, X.X., Hong, Y., Reible, D.D. (2014). Assessing Bioavailability of Hydrophobic Organic Compounds and Metals in Sediments Using Freely Available Porewater Concentrations. In: Reible, D. (eds) Processes, Assessment and Remediation of Contaminated Sediments. SERDP ESTCP Environmental Remediation Technology, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6726-7_7

Download citation

Publish with us

Policies and ethics