Skip to main content

Capping for Remediation of Contaminated Sediments

  • Chapter
  • First Online:

Part of the book series: SERDP ESTCP Environmental Remediation Technology ((SERDP/ESTCP,volume 6))

Abstract

The historical release of contaminants into the environment has generated a legacy of contaminated sites throughout the world. For years, the sediments in water bodies adjoining these pollution sources served as sinks for contaminants, particularly hydrophobic organic compounds (HOCs) and heavy metals. Many of these original sources have been eliminated, but the sediments that formerly served as a pollutant sink now serve as sources of contamination and residual environmental risk. Assessment and remediation of these contaminated sediment sites have been the subject of much scientific analysis, public debate and technological innovation (NRC, 2001).There are few economically viable options for management of contaminated sediments. Capping sediments with a layer of clean material is one of few alternatives with a proven record of success for sediment remediation. This chapter is intended to describe the tools and techniques that are applicable for 55 assessment, design, implementation and monitoring of capping as a remedy for contaminated sediment sites.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

REFERENCES

  • Accardi-Dey AM, Gschwend PM. 2002. Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments. Environ Sci Technol 36:21–29.

    Article  CAS  Google Scholar 

  • Agrawal A, Tratnyek PG. 1996. Reduction of nitro aromatic compounds by zero-valent iron metal. Environ Sci Technol 30:153–160.

    Article  CAS  Google Scholar 

  • ARCADIS. 2008. Conceptual Removal Design/Removal Action Work Plan for Silver Lake Sediments. General Electric, Albany, NY, USA.

    Google Scholar 

  • Baker JR, Mihelcic JR, Luehrs DC, Hickey JP. 1997. Evaluation of estimation methods for organic carbon normalized sorption coefficients. Water Environ Res 69:136–145.

    Article  CAS  Google Scholar 

  • Bereket G, Arog AZ, Özel MZ. 1997. Removal of Pb(II), Cd(II), Cu(II), and Zn(II) from aqueous solutions by adsorption on bentonite. J Colloid Interface Sci 187:338–343.

    Article  CAS  Google Scholar 

  • Bokuniewicz HJ, Liu JT. 1981. Stability of layered dredged sediment deposits at subaqueous sites. In Proceedings, OCEANS ’81. IEEE Council on Ocean Engineering, Boston, MA, USA, pp 752–754.

    Google Scholar 

  • Boudreau BP, Jørgensen BB, eds. 2001. The Benthic Boundary Layer: Transport Processes and Biogeochemistry. Oxford University Press, New York, NY, USA. 440 p.

    Google Scholar 

  • Boudreau BP. 1997. Diagenetic Models and Their Implementation: Modelling Transport and Reactions in Aquatic Sediments. Springer-Verlag, New York, NY, USA. 414 p.

    Book  Google Scholar 

  • Brendel PJ, Luther III GW. 1995. Development of a gold amalgam voltammetric microelectrode for the determination of dissolved Fe, Mn, O2, and S(−II) in porewaters of marine and freshwater sediments. Environ Sci Technol 29:751–761.

    Article  CAS  Google Scholar 

  • Burkhard LP. 2000. Estimating dissolved organic carbon partition coefficients for nonionic organic chemicals. Environ Sci Technol 34:4663–4668.

    Article  CAS  Google Scholar 

  • Carslaw HS, Jaeger JC. 1986. Conduction of Heat in Solids, 2nd ed. Oxford University Press, Oxford, United Kingdom.

    Google Scholar 

  • Charbeneau RJ. 2000. Groundwater Hydraulics and Pollutant Transport. Prentice Hall, Upper Saddle River, NJ, USA.

    Google Scholar 

  • Chen X, Wright JV, Conca JL, Peurrung LM. 1997. Effects of pH on heavy metal sorption on mineral apatite. Environ Sci Technol 31:624–631.

    Article  CAS  Google Scholar 

  • Freeze AR, Cherry JA. 1979. Groundwater. Prentice-Hall, Englewood Cliffs, NJ, USA.

    Google Scholar 

  • Choy B, Reible DD. 2000. Diffusion Models of Environmental Transport. CRC Press, Boca Raton, FL, USA. 208 p.

    Google Scholar 

  • Clarke J, Reible DD, Mutch R. 1993. Contaminant transport and behavior in the subsurface. In Wilson D, Clarke A, eds, Hazardous Waste Soil Remediation: Theory and Application of Innovative Technologies. Marcel-Dekker, New York, NY, USA, pp 1–49.

    Google Scholar 

  • Cook PG, Favreau G, Dighton JC, Tickell S. 2003. Determining natural groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic environmental tracers. J Hydrol 277:74–88.

    Article  CAS  Google Scholar 

  • Crank J. 1983. The Mathematics of Diffusion. Oxford University Press, Oxford, United Kingdom.

    Google Scholar 

  • Crannell BS, Eighmy TT, Hall G, Willson C, Reible DD, Ming Y. 2004. Pilot-Scale Reactive Barrier Technologies for Containment of Metal-Contaminated Sediments and Dredged Materials. Submitted to The NOAA/UNH Cooperative Institute for Coastal and Estuarine Environmental Technology (CICEET). November.

    Google Scholar 

  • Danckwerts PV. 1953. Continuous flow systems: Distribution of residence times. Chem Eng Sci 2:1–13.

    Article  CAS  Google Scholar 

  • Ditoro DM, Mahony JD, Hansen DJ, Scott KJ, Carlson AR, Ankley GT. 1992. Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environ Sci Technol 26:96–101.

    Article  CAS  Google Scholar 

  • Donat R, Akdogan A, Erdem E, Cetisli H. 2005. Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions. J Colloid Interface Sci 286:43–52.

    Article  CAS  Google Scholar 

  • Erten MB, Gilbert R, El Mohtar CS, Reible DD. 2011. Development of a laboratory procedure to evaluate the consolidation potential of soft contaminated sediments. Geotech Test J 34:10.1520/GTJ103689.

  • Fredette TJ, Germano JD, Kullberg PG, Carey DA, Murray P. 1992. Chemical stability of capped dredged material disposal mounds in Long Island Sound, USA. In Proceedings, 1st International Ocean Pollution Symposium, Mayaguez, Puerto Rico. April,1991: Chemistry and Ecology.

    Google Scholar 

  • Gerino M, Aller RC, Lee C, Cochran JK, Aller JY, Green MA, Hirschberg D. 1998. Comparison of different tracers and methods used to quantify bioturbation during a spring bloom: 234-Thorium, luminophores and chlorophyll a. Estuar Coast Shelf Sci 46:531–547.

    Article  Google Scholar 

  • Goldhaber MB, Aller RC, Cochran JK, Rosenfeld JK, Martens CS, Berner RA. 1977. Sulfate reduction, diffusion, and bioturbation in Long Island Sound sediments: Report of the FOAM Group. Am J Sci 277:193–237.

    Article  CAS  Google Scholar 

  • Goring CA. 1962. Control of nitrification by 2-chloro-6-(trichloro-methyl) pyridine. Soil Sci 93:211–218.

    Article  CAS  Google Scholar 

  • Groisman L, Chaim R, Gerstl A, Mingelgrin U. 2004. Sorption of organic compounds of varying hydrophobicities from water and industrial wastewater by long- and short-chain organoclays. Appl Clay Sci 24:159–166.

    Article  CAS  Google Scholar 

  • Harper G, Elmore AC, Redell C, Risley G, Burken JG. 2011. Physical impact of waterjet‐based sediment remediation on benthic organisms. Remediat J 21:107–118.

    Article  Google Scholar 

  • Hawker DW, Connell DW. 1988. Octanol-water partition coefficients of polychlorinated biphenyl congeners. Environ Sci Technol 22:382–387.

    Article  CAS  Google Scholar 

  • Hayduk W, Laudie H. 1974. Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solutions. AIChE J 20:611–615.

    Article  CAS  Google Scholar 

  • Himmelheber DW, Taillefert M, Pennell KD, Hughes JB. 2008. Spatial and temporal evolution of biogeochemical processes following in situ capping of contaminated sediments. Environ Sci Technol 42:4113–4120.

    Article  CAS  Google Scholar 

  • Himmelheber DW, Thomas SH, Löffler FE, Taillefert M, Hughes JB. 2009. Microbial colonization of an in situ sediment cap and correlation to stratified redox zones. Environ Sci Technol 43:66–74.

    Article  CAS  Google Scholar 

  • Hong YS, Kinney KA, Reible DD. 2011. Acid volatile sulfides oxidation and metals (Mn, Zn) release upon sediment resuspension: Laboratory experiment and model development. Environ Toxicol Chem 30:564–575.

    Article  CAS  Google Scholar 

  • Hyun S, Jafvert CT, Lee LS, Rao PSC. 2006. Laboratory studies to characterize the efficacy of sand capping a coal tar-contaminated sediment. Chemosphere 63:1621–1631.

    Article  CAS  Google Scholar 

  • Jackson WA, Pardue JH. 1999. Potential for enhancement of biodegradation of crude oil in Louisiana salt marshes using nutrient amendments. Water Air Soil Pollut 109:343–355.

    Article  CAS  Google Scholar 

  • Jacobs PH, Waite TD. 2004. The role of aqueous iron(II) and manganese(II) in sub-aqueous active barrier systems containing natural clinoptilolite. Chemosphere 54:313–324.

    Article  CAS  Google Scholar 

  • Jacobs PH, Forstner U. 1999. Concept of subaqueous capping of contaminated sediments with active barrier systems (ABS) using natural and modified zeolites. Water Res 33:2083–2087.

    Article  CAS  Google Scholar 

  • Johnsen AR, Wick LY, Harms H. 2005. Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84.

    Article  CAS  Google Scholar 

  • Johnson NW, Reible DD, Katz LE. 2010. Biogeochemical changes and mercury methylation beneath an in-situ sediment cap. Environ Sci Technol 44:7280–7286.

    Article  CAS  Google Scholar 

  • Kanel SR, Manning B, Charlet L, Choi H. 2005. Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298.

    Article  CAS  Google Scholar 

  • Karickhoff S, Brown D, Scott T. 1979. Sorption of hydrophobic pollutants on natural sediments. Water Res 13:241–248.

    Article  CAS  Google Scholar 

  • Kershaw PJ. 1985. 14C and 210Pb in NE Atlantic sediments: Evidence of biological reworking in the context of radioactive waste disposal. J Environ Radioact 2:115–134.

    Article  CAS  Google Scholar 

  • Knox AS, Paller MH, Reible DD, Ma X, Petrisor IG. 2008. Sequestering agents for active caps—remediation of metals and organics. Soil Sediment Contam 17:516–532.

    Article  CAS  Google Scholar 

  • Lampert D, Reible DD. 2009. An analytical modeling approach for evaluation of capping of contaminated sediments. Soil Sediment Contam 18:470–488.

    Article  CAS  Google Scholar 

  • Lampert DJ, Sarchet WV, Reible DD. 2011. Assessing the effectiveness of thin-layer sand caps for contaminated sediment management through passive sampling. Environ Sci Technol 45:8437–8443.

    Article  CAS  Google Scholar 

  • Lampert D, Lu X, Reible D. 2013. Long-term PAH monitoring results from the Anacostia River active capping demonstration using polydimethylsiloxane (PDMS) fibers, Environmental Science: Processes and Impacts 15:554–562.

    Article  CAS  Google Scholar 

  • Lee DR. 1977. A device for measuring seepage flux in lakes and estuaries. Limnol Oceanogr 22:140–147.

    Article  CAS  Google Scholar 

  • Lee SY, Kim SJ, Chung SY, Jeong CH. 2004. Sorption of hydrophobic organic compounds onto organoclays. Chemosphere 55:781–785.

    Article  CAS  Google Scholar 

  • Li X-Q, Elliott DW, Zhang W-X. 2006. Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects. Crit Rev Solid State Mater Sci 31:111–122.

    Article  CAS  Google Scholar 

  • Lohmann R, MacFarlane JK, Gschwend PM. 2005. Importance of black carbon to sorption of native PAHs, PCBs, and PCDDs in Boston and New York Harbor sediments. Environ Sci Technol 39:141–148.

    Article  CAS  Google Scholar 

  • Lyman WJ, Reehl WF, Rosenblatt DH. 1990. Handbook of Chemical Property Estimation Methods. American Chemical Society, Washington, DC, USA. 90 p.

    Google Scholar 

  • Ma QY, Traina SJ, Logan TJ, Ryan JA. 1993. In situ lead immobilization by apatite. Environ Sci Technol 27:1803–1810.

    Article  CAS  Google Scholar 

  • Mackay D, Shiu WY, Ma KC, Lee SC. 2006. Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals. Lewis Publishers, Boca Raton, FL, USA. 919 p.

    Google Scholar 

  • Manes M, Hofer LJE. 1969. Application of the Polanyi adsorption potential theory to adsorption from solution on activated carbon. J Phys Chem 73:584–590.

    Article  CAS  Google Scholar 

  • McDonough KM, Fairey JL, Lowry GV. 2008. Adsorption of polychlorinated biphenyls to activated carbon: Equilibrium isotherms and a preliminary assessment of the effect of dissolved organic matter and biofilm loadings. Water Res 42:575–584.

    Article  CAS  Google Scholar 

  • McDonough PM, Olsta J, Zhu Y, Reible DD, Lowry G. 2007. Development and placement of a sorbent-amended thin layer sediment cap in the Anacostia River. Soil Sediment Contam 16:313–322.

    Article  CAS  Google Scholar 

  • Mellah A, Chegrouche S. 1997. The removal of zinc from aqueous solutions by natural bentonite. Water Res 31:621–629.

    Article  CAS  Google Scholar 

  • Melton JS, Prieto RA. 2008. Characterization and modeling of consolidation and seepage behavior of soft sediment at low stress levels. 2nd International Workshop on Geotechnics of Soft Soils - Focus On Ground Improvement, Glasgow, Scotland, September 3–5.

    Google Scholar 

  • Millington RJ, Quirk JP. 1961. Permeability of porous solids. Trans Faraday Soc 57:1200–1207.

    Article  CAS  Google Scholar 

  • Miyake M, Ishigaki K, Suzuki T. 1986. Structure refinements of Pb2+ ion-exchanged apatites by x-ray powder pattern-fitting. J Solid State Chem 61:230–235.

    Article  CAS  Google Scholar 

  • Morton KW. 1996. Numerical solution of convection-diffusion problems. Appl Math Math Comput, Vol 12. 283 p.

    Google Scholar 

  • Murphy P, Marquette A, Reible DD, Lowry GV. 2006. Predicting the performance of activated carbon-, coke-, and soil-amended thin layer sediment caps. J Environ Eng 132:787.

    Article  CAS  Google Scholar 

  • Murphy T, Moller A, Brouwer H. 1995. In situ treatment of Hamilton Harbour sediment. J Aquat Ecosyst Health 4:195–203.

    Article  Google Scholar 

  • NRC (National Research Council). 2001. A Risk-Management Strategy for PCB-Contaminated Sediments. National Academies Press, Washington, DC, USA. 452 p.

    Google Scholar 

  • O’Connor JM, O’Connor SG. 1983. Evaluation of the 1980 Capping Operations at the Experimental Mud Dump Site, New York, Bight Apex. Technical Report D-83-3. U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS, USA.

    Google Scholar 

  • Olaniran AO, Igbinosa EO. 2011. Chlorophenols and other related derivatives of environmental concern: Properties, distribution and microbial degradation processes. Chemosphere 83:1297–1306.

    Article  CAS  Google Scholar 

  • Ficklin JK, Weitkamp WE, Weiner KS. 1989. St. Paul Waterway Area Remedial Action and Habitat Restoration Project. In Contaminated Marine Sediments: Assessment and Remediation. National Research Council Report, Washington, DC, USA, pp. 440–441.

    Google Scholar 

  • Parrett K, Blishke H. 2005. 23-acre multilayer sediment cap in dynamic riverine environment using organoclay as adsorptive capping material. Presented at the Society of Environmental Toxicology and Chemistry 26th Annual Meeting, Baltimore, MD, USA. November.

    Google Scholar 

  • Peld M, Tõnsuaadu K, Bender V. 2004. Sorption and desorption of Cd2+ and Zn2+ ions in apatite-aqueous systems. Environ Sci Technol 38:5626–5631.

    Article  CAS  Google Scholar 

  • Pernyeszi T, Kasteel R, Witthuhn B, Klahre P, Vereecken H, Klumpp E. 2006. Organoclays for soil remediation: Adsorption of 2,4-dichlorophenol on organoclay/aquifer material mixtures studied under static and flow conditions. Appl Clay Sci 32:179–189.

    Article  CAS  Google Scholar 

  • Ponder SM, Darab JG, Mallouk TE. 2000. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569.

    Article  CAS  Google Scholar 

  • Prieto R, Melton J, Gardner K. 2009. Contaminant transport during sediment consolidation after reactive core mat deployment. Presented at the Fifth International Conference on Remediation of Contaminated Sediments, Jacksonville, FL, USA, February 2–5.

    Google Scholar 

  • Rakowska MI, Kupryianchyk D, Harmsen J, Grotenhuis T, Koelmans AA. 2012. In situ remediation of contaminated sediments using carbonaceous materials, Environmental Toxicology and Chemistry 31:693–704.

    Article  CAS  Google Scholar 

  • Reible DD, Lu X, Blishke H. 2005. Organoclay for the control of NAPLs in sediments. Presented at the Society of Environmental Toxicology and Chemistry 26th Annual Meeting, Baltimore, MD, USA, November.

    Google Scholar 

  • Reible D, Lotufo G. 2012. Demonstration and Evaluation of Solid Phase Microextraction for the Assessment of Bioavailability and Contaminant Mobility. Final Technical Report. SERDP/ESTCP, Washington, DC, USA. April.

    Google Scholar 

  • Reible DD, Lu X, Moretti L, Galjour J, Ma X. 2007. Organoclays for the capping of contaminated sediments. Fifth International Conference on Remediation of Contamianted Sediments, Savannah, GA, USA, January.

    Google Scholar 

  • Reible DD, Lampert DJ, Constant D, Mutch Jr RD, Zhu Y. 2006. Active capping demonstration in the Anacostia river, Washington, D.C. Remediat J 17:39–53.

    Article  Google Scholar 

  • Sayles GD, You G, Wang M, Kupferle MJ. 1997. DDT, DDD, and DDE dechlorination by zero-valent iron. Environ Sci Technol 31:3448–3454.

    Article  CAS  Google Scholar 

  • Schwarzenbach R, Gschwend PM, Imboden DM. 2003. Environmental Organic Chemistry, 2nd ed. Wiley-Interscience, Hoboken, NJ, USA.

    Google Scholar 

  • Seth R, Mackay D, Muncke J. 1999. Estimating the organic carbon partition coefficient and its variability for hydrophobic chemicals. Environ Sci Technol 33:2390–2394.

    Article  CAS  Google Scholar 

  • Sharma B, Gardner KH, Melton J, Hawkins A, Tracey G. 2009. Evaluation of activated carbon as a reactive cap sorbent for sequestration of polychlorinated biphenyls in the presence of humic acid. Environ Eng Sci 26:1371–1379.

    Article  CAS  Google Scholar 

  • Shin WS, Pardue JH, Jackson WA. 2000. Oxygen demand and sulfate reduction in petroleum hydrocarbon contaminated salt marsh soils. Water Res 34:1345–1353.

    Article  CAS  Google Scholar 

  • Simpson SL, Pryor ID, Mewburn BR, Batley GE, Jolley D. 2002. Considerations for capping metal-contaminated sediments in dynamic estuarine environments. Environ Sci Technol 36:3772–3778.

    Article  CAS  Google Scholar 

  • Smith A. 2011. Microbiological Activity and Organic Pollutant Fate and Transport in Sediments and Sediment Caps. PhD Dissertation. The University of Texas, Austin, TX, USA.

    Google Scholar 

  • Smith A, Kirisits MJ, Reible DD. 2012. Assessment of potential anaerobic biotransformation of organic pollutants in sediment caps. N Biotechnol 30:80–87.

    Article  CAS  Google Scholar 

  • Sumeri A, Fredette TJ, Kullberg PG, Germano JD, Carey DA. 1994. Sediment Chemistry Profiles of Capped Dredged Material Deposits Taken 3 to 11 Years after Capping. Technical Note DRP-5-09. US Army Engineer Waterways Experiment Station, Vicksburg, MS, USA.

    Google Scholar 

  • Sun M, Yan F, Zhang R, Reible DD, Lowry GV, Gregory KB. 2010. Redox control and hydrogen production in sediment caps using carbon cloth electrodes. Environ Sci Technol 44:8209–8215.

    Article  CAS  Google Scholar 

  • Takeuchi Y, Arai H. 1990. Removal of coexisting Pb2+, Cu2+ and Cd2+ ions from water by addition of hydroxyapatite powder. J Chem Eng Japan 23:75–80.

    Article  CAS  Google Scholar 

  • Thibodeaux LJ. 1996. Environmental Chemodynamics: Movement of Chemicals in Air, Water, and Soil. Volume 110. John Wiley & Sons, Inc., New York, NY, USA. 593 p.

    Google Scholar 

  • Thibodeaux LJ, Reible DD, Bosworth WS, Sarapas LC. 1991. Theoretical evaluation of the effectiveness of capping PCB-contaminated New Bedford Harbor bed sediment. Final report. Balsam, Inc.

    Google Scholar 

  • Thoma GJ, Reible DD, Valsaraj KT, Thibodeaux LJ. 1993. Efficiency of capping contaminated sediments in situ. 2. Mathematics of diffusion-adsorption in the capping layer. Environ Sci Technol 27:2412–2419.

    Article  CAS  Google Scholar 

  • Thoms SR, Matisoff G, McCall PL, Wang X. 1995. Models for Alteration of Sediments by Benthic Organisms. Water Environment Research Foundation, Alexandria, VA, USA.

    Google Scholar 

  • USEPA (U.S. Environmental Protection Agency). 2005. Contaminated Sediment Remediation Guidance for Hazardous Waste Sites. EPA-540-R-05-012; OSWER 9355.0-85. December. 236 p. http://www.epa.gov/superfund/health/conmedia/sediment/guidance.htm. Accessed November 2, 2012.

  • Van Genuchten MT. 1981. Analytical solutions for chemical transport with simultaneous adsorption, zero-order production and first-order decay. J Hydrol 49:213–233.

    Article  Google Scholar 

  • Walters RW, Luthy RG. 1984. Equilibrium adsorption of polycyclic aromatic hydrocarbons from water onto activated carbon. Environ Sci Technol 18:395–403.

    Article  CAS  Google Scholar 

  • Wang C-B, Zhang W-X. 1997. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31:2154–2156.

    Article  CAS  Google Scholar 

  • Wang XQ, Thibodeaux LJ, Valsaraj KT, Reible DD. 1991. Efficiency of capping contaminated bed sediments in situ. 1. Laboratory-scale experiments on diffusion-adsorption in the capping layer. Environ Sci Technol 25:1578–1584.

    Article  CAS  Google Scholar 

  • Xu R, Obbard JP. 2004. Biodegradation of polycyclic aromatic hydrocarbons in oil-contaminated beach sediments treated with nutrient amendments. J Environ Qual 33:861–867.

    Article  CAS  Google Scholar 

  • Xu Y, Schwartz FW. 1994. Lead immobilization by hydroxyapatite in aqueous solutions. J Contam Hydrol 15:187–206.

    Article  CAS  Google Scholar 

  • Xu Y, Schwartz FW, Traina SJ. 1994. Sorption of Zn2+ and Cd2+ on hydroxyapatite surfaces. Environ Sci Technol 28:1472–1480.

    Article  CAS  Google Scholar 

  • Yuan Q, Valsaraj KT, Reible DD, Willson CS. 2007. A laboratory study of sediment and contaminant release during gas ebullition. J Air Waste Manag 57:1103–1111.

    Article  CAS  Google Scholar 

  • Zeman AJ, Patterson T. 1997. Preliminary results of demonstration capping project in Hamilton Harbour. Water Qual Res J Canada 32:439–452.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reible, D.D., Lampert, D.J. (2014). Capping for Remediation of Contaminated Sediments. In: Reible, D. (eds) Processes, Assessment and Remediation of Contaminated Sediments. SERDP ESTCP Environmental Remediation Technology, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6726-7_12

Download citation

Publish with us

Policies and ethics