Central Nervous System (CNS)

  • Enid Gilbert-Barness
  • Diane E. Spicer
  • Thora S. Steffensen


The human brain undergoes several stages of intrauterine and postnatal development, each with specific and nonspecific vulnerabilities to developmental anomalies. In primary and secondary neurulation, there is normal development of the brain and spinal cord. The formation of the brain and spinal cord rostral to the lumbar segments is called primary neurulation. It occurs during the third and fourth weeks of gestation and begins at 18 days with the induction, by the notochord and chordal mesoderm, of the neuroectodermal plate derived from the dorsal midline of the ectoderm. Its lateral margins invaginate and close dorsally to form the neural tube, which gives rise to the CNS. The anterior end closes at about 24 days, and the posterior end, approximately at the lumbosacral level, closes at about 26 days. The surrounding mesoderm gives rise to the dura and the skull and vertebrae.


Arachnoid Cyst Chiari Malformation Aqueductal Stenosis Septum Pellucidum External Granular Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Cornford E, Twining P. The Dandy-Walker syndrome: the value of antenatal diagnosis. Clin Radiol. 1992;45(3):172–4.CrossRefPubMedGoogle Scholar
  2. Davis GH. Fetal hydrocephalus. Clin Perinatol. 2003;30(3):531–9.CrossRefPubMedGoogle Scholar
  3. DeLange S. Progressive hydrocephalus. In: Vinken B, editor. Congenital malformations of the brain and skull, Handbook of clinical neurology, vol. 20. Amsterdam: Elsevier; 1977. p. 525.Google Scholar
  4. Dobyns WB. Agenesis of the corpus callosum and gyral malformations are frequent manifestations of nonketotic hyperglycinemia. Neurology. 1989;39(6):817–20.CrossRefPubMedGoogle Scholar
  5. Frey L, Hauser WA. Epidemiology of neural tube defects. Epilepsia. 2003;44(Suppl 3):4–13.CrossRefGoogle Scholar
  6. Gilbert-Barness E, editor. Potter’s pathology of the fetus, infant and child. 2nd ed. Philadelphia: Elsevier; 2007.Google Scholar
  7. Jeret JS, Serur D, Wisniewski K, Fisch C. Frequency of agenesis of the corpus callosum in the developmentally disabled population as determined by computerized tomography. Pediatr Neurosci. 1985–1986;12(2):101–3.Google Scholar
  8. Jouet M, Kenwrick S. Gene analysis of L1 neural cell adhesion molecule in prenatal diagnosis of hydrocephalus. Lancet. 1995;345(8943):161–2.CrossRefPubMedGoogle Scholar
  9. Kinsman SL, Plawner LL, Hahn JS. Holoprosencephaly: recent advances and new insights. Curr Opin Neurol. 2000;13(2):127–32.CrossRefPubMedGoogle Scholar
  10. Lawrence K. Hydrocephalus and malformations in the central nervous system. In: Keeling W, editor. Fetal and neonatal pathology. London: Springer; 1987. p. 463.CrossRefGoogle Scholar
  11. Lewis AJ, Simon EM, Barkovich AJ, Clegg NJ, Delgado MR, Levey E, et al. Middle interhemispheric variant of holoprosencephaly: a distinct cliniconeuroradiologic subtype. Neurology. 2002;59(12):1860–5.CrossRefPubMedGoogle Scholar
  12. Lindhout D, Omtzigt JG, Cornel MC. Spectrum of neural-tube defects in 34 infants prenatally exposed to antiepileptic drugs. Neurology. 1992;42(4 Suppl 5):111–8.PubMedGoogle Scholar
  13. Louis DN, Ohgaki H, Wiestler OD, et al. WHO classification of tumours of the central nervous system. 4th ed. Lyons: IARC; 2007.Google Scholar
  14. Murray JC, Johnson JA, Bird TD. Dandy-Walker malformation: etiologic heterogeneity and empiric recurrence risks. Clin Genet. 1985;28(4):272–83.CrossRefPubMedGoogle Scholar
  15. Niesen CE. Malformations of the posterior fossa: current perspectives. Semin Pediatr Neurol. 2002;9(4):320–34.CrossRefPubMedGoogle Scholar
  16. Norman NG, McGillwray BC, Kalousek DK, et al. Congenital malformations of the brain. New York: Oxford University Press; 1995.Google Scholar
  17. Parisi MS, Dobyns WB. Human malformations of the midbrain and hindbrain: review and proposed classification scheme. Mol Genet Metab. 2003;80(1–2):36–53.CrossRefPubMedGoogle Scholar
  18. Paul LK, Brown WS, Adolphs R, Tyszka JM, Richards LJ, Mukherjee P, et al. Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity. Nat Rev Neurosci. 2007;8(4):287–99.CrossRefPubMedGoogle Scholar
  19. Roach E, Demyer W, Conneally PM, Palmer C, Merritt AD. Holoprosencephaly: birth data, genetic and demographic analyses of 30 families. Birth Defects Orig Artic Ser. 1975;11(2):294–313.PubMedGoogle Scholar
  20. Schrander-Stumpel C, Fryns JP. Congenital hydrocephalus: nosology and guidelines for clinical approach and genetic counseling. Eur J Pediatr. 1998;157(5):355–62.CrossRefPubMedGoogle Scholar
  21. Stocker JT, Dehner LP, Husain AN, editors. Stocker and Dehner’s pediatric pathology. 3rd ed. Philadelphia: Lippincott Williams and Wilkins; 2011.Google Scholar
  22. Ullrich NJ, Pomeroy SL. Molecular genetics of pediatric central nervous system tumors. Curr Oncol Rep. 2006;8:423–9.CrossRefPubMedGoogle Scholar
  23. Váradi V, Tóth Z, Török O, Papp Z. Heterogeneity and recurrence risk for congenital hydrocephalus (ventriculomegaly): a prospective study. Am J Med Genet. 1988;29(2):305–10.CrossRefPubMedGoogle Scholar
  24. Wiswell TE, Tuttle DJ, Northam RS, Simonds GR. Major congenital neurologic malformations. A 17-year survey. Am J Dis Child. 1990;144(1):61–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Enid Gilbert-Barness
    • 1
  • Diane E. Spicer
    • 2
  • Thora S. Steffensen
    • 3
  1. 1.Laboratory Medicine, Pediatrics and Obstetrics and Gynecology Tampa General Hospital Morsani College of MedicineUniversity of South FloridaTampaUSA
  2. 2.Department of Pediatrics-CardiologyUniversity of FloridaValricoUSA
  3. 3.Department of PathologyTampa General HospitalTampaUSA

Personalised recommendations