Skip to main content

Kalman Filtering and State-Feedback Control of a Nonlinear Piezoelectric Cantilevered Actuator

  • Chapter
  • First Online:

Abstract

This chapter deals with the state estimation with noise rejection in a piezoelectric cantilevered actuator and its state-feedback control. The noises which come from the sensor used, strain gage, are important and should be filtered. For that, we employ the classical Kalman filtering for their rejection and for the state estimation and we apply afterwards a state-feedback control with integral action to improve the general performances of the actuator. However, as the actuator exhibits hysteresis nonlinearity, we propose first its linearization thanks to a feedforward control before application of the above filtering and feedback control. The experimental results confirm the efficiency of the approach and demonstrate the interest of the method for precise positioning such as in micropositioning applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Identification Matlab Toolbox.

References

  1. M. Rakotondrabe, C. Clévy, P. Lutz, Modelling and robust position/force control of a piezoelectric microgripper, in IEEE—International Conference on Automation Science and Engineering (CASE), Scottsdale, AZ, USA, 2007, pp. 39–44

    Google Scholar 

  2. M. Rakotondrabe, Y. Haddab, P. Lutz, Quadrilateral modelling and robust control of a nonlinear piezoelectric cantilever. IEEE Trans. Contr. Syst. Technol. (T-CST) 17(3), 528–539 (2009)

    Google Scholar 

  3. M. Rakotondrabe, K. Rabenorosoa, J. Agnus, N. Chaillet, Robust feedforward-feedback control of a nonlinear and oscillating 2-dof piezocantilever. IEEE Trans. Autom. Sci. Eng. (T-ASE) 8(3), 506–519 (2011)

    Google Scholar 

  4. S. Khadraoui, M. Rakotondrabe, P. Lutz, Interval modeling and robust control of piezoelectric microactuators. IEEE Trans. Contr. Syst. Technol. (T-CST) 20(2), 486–494 (2012)

    Google Scholar 

  5. Y. Shan, K.K. Leang, Accounting for hysteresis in repetitive control design. Automatica 48(8), 1751–1758 (2012)

    Article  MathSciNet  Google Scholar 

  6. A. Sebastian, A. Gannepalli, M.V. Salapaka, A review of the systems approach to the analysis of dynamic-mode atomic force microscopy. IEEE Trans. Contr. Syst. Technol. 15(5), 952–959 (2007)

    Article  Google Scholar 

  7. Q. Xu, Y. Li, Model predictive discrete-time sliding mode control of a nanopositioning piezostage without modeling hysteresis. IEEE Trans. Contr. Syst. Technol. 20(4), 983–994 (2012)

    Article  Google Scholar 

  8. A. Bazaei, Y.K. Yong, S.O.R. Moheimani, A. Sebastian, Tracking of triangular references using signal transformation for control of a novel AFM scanner stage. IEEE Trans. Contr. Syst. Technol. 20(2), 453–464 (2012)

    Article  Google Scholar 

  9. S. Devasia, E.E. Eleftheriou, R. Moheimani, A survey of control issues in nanopositioning. IEEE Trans. Contr. Syst. Technol. 15(5), 802–823 (2007)

    Article  Google Scholar 

  10. M. Rakotondrabe, Piezoelectric Cantilevered Structures: Modeling, Control and Measurement/Estimation Aspects (Springer, Berlin, 2013)

    Google Scholar 

  11. D. Croft, G. Shed, S. Devasia, Creep, hysteresis and vibration compensation for piezoactuators: atomic force microscopy application. ASME J. Dyn. Syst. Meas. Contr. 123(1), 35–43 (2001)

    Article  Google Scholar 

  12. A. Dubra, J. Massa, C.l. Paterson, Preisach classical and nonlinear modeling of hysteresis in piezoceramic deformable mirrors. Opt. Express 13(22), 9062–9070 (2005)

    Google Scholar 

  13. M. Rakotondrabe, C. Clévy, P. Lutz, Complete open loop control of hysteretic, creeped and oscillating piezoelectric cantilever. IEEE Trans. Autom. Sci. Eng. (TASE) 7(3), 440–450 (2010)

    Google Scholar 

  14. W.T. Ang, P.K. Kholsa, C.N. Riviere, Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications. IEEE/ASME Trans. Mechatron. 12(2), 134–142 (2007)

    Article  Google Scholar 

  15. B. Mokaberi, A.A.G. Requicha, Compensation of scanner creep and hysteresis for AFM nanomanipulation. IEEE Trans. ASE 5(2), 197–208 (2008)

    Google Scholar 

  16. M. Al Janaideh, P. Krejci, Inverse rate-dependent Prandtl–Ishlinskii model for feedforward compensation of hysteresis in a piezomicropositioning actuator. IEEE/ASME Trans. Mechatron. (2012). doi:10.1109/TMECH.2012.2205265

    Google Scholar 

  17. M. Rakotondrabe, Classical Prandtl–Ishlinskii modeling and inverse multiplicative structure to compensate hysteresis in piezoactuators, in ACC (American Control Conference), Montréal, Canada, June 2012, pp. 1646–1651

    Google Scholar 

  18. M. Rakotondrabe, Bouc–Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators. IEEE Trans. ASE 8(2), 428–431 (2011)

    Google Scholar 

  19. J.J. Dosch, D.J. Inman, E. Garcia, A self-sensing piezoelectric actuator for collocated control. J. Intell. Mater. Syst. Struct. 3(1), 166–185 (1992)

    Article  Google Scholar 

  20. W.W. Law, W.-H. Liao, J. Huang, Vibration control of structures with self-sensing piezoelectric actuators incorporating adaptive mechanisms. Smart Mater. Struct. 12, 720–730 (2003)

    Article  Google Scholar 

  21. C.K. Pang, G. Guo, B.M. Chen, T.H. Lee, Self-sensing actuation for nanopositioning and active-mode damping in dual-stage HDDs. IEEE/ASME Trans. Mechatron. (T-mech) 11(3), 328–338 (2006)

    Google Scholar 

  22. S.O.R. Moheimani, Y.K. Yong, Simultaneous sensing and actuation with a piezoelectric tube scanner. Rev. Sci. Instrum. 79, 073702 (2008)

    Article  Google Scholar 

  23. S.O.R. Moheimani, Invited review article: accurate and fast nanopositioning with piezoelectric tube scanners: emerging trends and future challenges. Rev. Sci. Instrum. 79, 071101 (2008)

    Article  Google Scholar 

  24. A. Ivan, M. Rakotondrabe, P. Lutz, N. Chaillet, Quasi-static displacement self-sensing method for cantilevered piezoelectric actuators. Rev. Sci. Instrum. (RSI) 80(6), 065102 (2009)

    Google Scholar 

  25. A. Ivan, M. Rakotondrabe, P. Lutz, N. Chaillet, Current integration force and displacement self-sensing method for cantilevered piezoelectric actuators. Rev. Sci. Instrum. (RSI) 80(12), 2126103 (2009)

    Google Scholar 

  26. M. Rakotondrabe, I.A. Ivan, S. Khadraoui, C. Clevy, P. Lutz, N. Chaillet, Dynamic displacement self-sensing and robust control of canxtilevered piezoelectric actuators dedicated to microassembly tasks, in IEEE/ASME—AIM (International Conference on Intelligent Materials), Montréal, Canada, July 2010, pp. 557–562

    Google Scholar 

  27. M.A. Krasnosel’skii, A.V. Pokrovskii, Systems with Hysteresis (Springer, Berlin, 1989)

    Google Scholar 

  28. K. Kuhnen, H. Janocha, Complex hysteresis model of a broad class of hysteretic nonlinearities, in Proceedings of 8th International Conference on New Actuators, Bremen, pp. 688–691 (2002)

    Google Scholar 

  29. R.G. Brown, P.Y.C. Hwang, Introduction to Random Signals and Applied Kalman Filtering, 3rd edn. (Wiley, New York, 1997)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the national ANR-Emergence MYMESYS-project (ANR-11-EMMA-006: High Performances Embedded Measurement Systems for multiDegrees of Freedom Microsystems) and partially by the MIM-Hac project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micky Rakotondrabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rakotondrabe, M., Escareno, JA., Habineza, D., Lescano, S. (2013). Kalman Filtering and State-Feedback Control of a Nonlinear Piezoelectric Cantilevered Actuator. In: Rakotondrabe, M. (eds) Smart Materials-Based Actuators at the Micro/Nano-Scale. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6684-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6684-0_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6683-3

  • Online ISBN: 978-1-4614-6684-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics