A Hybrid Control Approach to Nanopositioning

  • Tomas Tuma
  • Abu Sebastian
  • John Lygeros
  • Angeliki Pantazi
Chapter

Abstract

Precise position control on the nanometer and subnanometer scale, referred to as nanopositioning, is a key enabler for nanoscale science and engineering. In nanopositioning, feedback control is essential to meet the stringent requirements on accuracy, stability, and repeatability in the presence of model uncertainties and environmental disturbances. In this chapter, we review a new hybrid control approach to nanopositioning which is based on the combination of a continuous-time control law with impulsive modifications of the controller states. By using impulsive control, the limitations of conventional linear controllers can be overcome, such as the inherent trade-off between closed-loop bandwidth and resolution. We review the related literature, present an in-depth analysis of the stability and performance characteristics of impulsive control, and verify the theoretical conclusions experimentally using a custom-built atomic force microscope.

Keywords

Settling 

Notes

Acknowledgements

We thank Urs Egger and Walter Häberle for their support with the mechanical and electronic hardware used in the experiments. Special thanks go to Haris Pozidis and Evangelos Eleftheriou for their support of this work.

References

  1. 1.
    G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49(1), 57–61 (1982)CrossRefGoogle Scholar
  2. 2.
    G. Binnig, C. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56(9), 930–933 (1986)CrossRefGoogle Scholar
  3. 3.
    L. Gross, F. Mohn, N. Moll, B. Schuler, A. Criado, E. Guitián, D. Peña, A. Gourdon, G. Meyer, Bond-order discrimination by atomic force microscopy. Science 337(6100), 1326–1329 (2012)CrossRefGoogle Scholar
  4. 4.
    D. Pires, J.L. Hedrick, A.D. Silva, J. Frommer, B. Gotsmann, H. Wolf, M. Despont, U. Duerig, A.W. Knoll, Nanoscale three-dimensional patterning of molecular resists by scanning probes. Science 328, 732–735 (2010)CrossRefGoogle Scholar
  5. 5.
    T. Ando, High-speed atomic force microscopy coming of age. Nanotechnology 23, 062001 (2012)CrossRefGoogle Scholar
  6. 6.
    E. Eleftheriou, T. Antonakopoulos, G. Binnig, G. Cherubini, M. Despont, A. Dholakia, U. Durig, M. Lantz, H. Pozidis, H. Rothuizen, P. Vettiger, Millipede - a MEMS-based scanning-probe data-storage system. IEEE Trans. Magn. 39(2) 938–945 (2003)CrossRefGoogle Scholar
  7. 7.
    A. Pantazi, A. Sebastian, T.A. Antonakopoulos, P. Baechtold, A.R. Bonaccio, J. Bonan, G. Cherubini, M. Despont, R.A. DiPietro, U. Drechsler, U. Duerig, B. Gotsmann, W. Haeberle, C. Hagleitner, J.L. Hedrick, D. Jubin, A. Knoll, M.A. Lantz, J. Pentarakis, H. Pozidis, R.C. Pratt, H. Rothuizen, R. Stutz, M. Varsamou, D. Wiesmann, E. Eleftheriou, Probe-based ultrahigh-density storage technology. IBM J. Res. Develop. 52( 4.5), 493–511 (2008)Google Scholar
  8. 8.
    R.A. Oliver, Advances in AFM for the electrical characterization of semiconductors. Rep. Progr. Phys. 71(7), 076501 (2008)CrossRefGoogle Scholar
  9. 9.
    T. Tuma, A. Pantazi, J. Lygeros, A. Sebastian, Nanopositioning with impulsive state multiplication: a hybrid control approach. IEEE Trans. Contr. Syst. Technol. (2012, to appear)Google Scholar
  10. 10.
    T. Tuma, A. Sebastian, W. Häberle, J. Lygeros, A. Pantazi, Impulsive control for fast nanopositioning. Nanotechnology 22, 135501 (2011)CrossRefGoogle Scholar
  11. 11.
    T. Tuma, A. Pantazi, J. Lygeros, A. Sebastian, Comparison of two non-linear control approaches to fast nanopositioning: impulsive control and signal transformation. Mechatronics 22, 302–309 (2012)CrossRefGoogle Scholar
  12. 12.
    T. Tuma, A. Pantazi, J. Lygeros, A. Sebastian, Impulsive control for nanopositioning: stability and performance, in Proceedings of the 14th International Conference on Hybrid Systems: Computation and Control, ACM, pp. 173–180 (2011)Google Scholar
  13. 13.
    S.M. Salapaka, M.V. Salapaka, Scanning probe microscopy. IEEE Contr. Syst. Mag. 28(2), 65–83 (2008)CrossRefGoogle Scholar
  14. 14.
    D. Abramovitch, S. Andersson, L. Pao, G. Schitter, A tutorial on the mechanisms, dynamics, and control of atomic force microscopes, in Proceedings of the American Control Conference, IEEE, pp. 3488–3502 (2007)Google Scholar
  15. 15.
    S. Devasia, E. Eleftheriou, S.O.R. Moheimani, A survey of control issues in nanopositioning. IEEE Trans. Contr. Syst. Technol. 15(5), 802–823 (2007)CrossRefGoogle Scholar
  16. 16.
    S. Aphale, A. Fleming, S. Reza Moheimani, Integral resonant control of collocated smart structures. Smart Mater. Struct. 16, 439 (2007)CrossRefGoogle Scholar
  17. 17.
    A. Fleming, S. Aphale, S. Moheimani, A new method for robust damping and tracking control of scanning probe microscope positioning stages. IEEE Trans. Nanotechnol. 9(4), 438–448 (2010)CrossRefGoogle Scholar
  18. 18.
    A. Sebastian, A. Pantazi, S.O.R. Moheimani, H. Pozidis, E. Eleftheriou, Achieving subnanometer precision in a MEMS-based storage device during self-servo write process. IEEE Trans. Nanotechnol. 7(5), 586–595 (2008)CrossRefGoogle Scholar
  19. 19.
    G. Schitter, R. Stark, A. Stemmer, Fast contact-mode atomic force microscopy on biological specimen by model-based control. Ultramicroscopy 100(3), 253–257 (2004)CrossRefGoogle Scholar
  20. 20.
    S. Salapaka, A. Sebastian, J.P. Cleveland, M.V. Salapaka, High bandwidth nano-positioner: a robust control approach. Rev. Sci. Instrum. 73(9), 3232–3241 (2002)CrossRefGoogle Scholar
  21. 21.
    A. Sebastian, S. Salapaka, Design methodologies for robust nano-positioning. IEEE Trans. Contr. Syst. Technol. 13(6), 868–876 (2005)CrossRefGoogle Scholar
  22. 22.
    C. Lee, S.M. Salapaka, Robust broadband nanopositioning: fundamental trade-offs, analysis, and design in a two-degree-of-freedom control framework. Nanotechnology 20(3), 035501 (2009)Google Scholar
  23. 23.
    S. Bashash, N. Jalili, Robust adaptive control of coupled parallel piezo-flexural nanopositioning stages. IEEE/ASME Trans. Mechatron. 14(1), 11–20 (2009)CrossRefGoogle Scholar
  24. 24.
    S. Hara, Y. Yamamoto, T. Omata, M. Nakano, Repetitive control system: a new type servo system for periodic exogenous signals. IEEE Trans. Automat. Contr. 33(7), 659–668 (1988)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Y. Shan, K. Leang, Repetitive control with Prandtl-Ishlinskii hysteresis inverse for piezo-based nanopositioning, in Proceedings of the American Control Conference, IEEE, pp. 301–306 (2009)Google Scholar
  26. 26.
    D. Bristow, M. Tharayil, A. Alleyne, A survey of iterative learning control. IEEE Contr. Syst. Mag. 26(3), 96–114 (2006)CrossRefGoogle Scholar
  27. 27.
    K. Leang, Q. Zou, S. Devasia, Feedforward control of piezoactuators in atomic force microscope systems. IEEE Contr. Syst. Mag. 29, 70–82 (2009)MathSciNetCrossRefGoogle Scholar
  28. 28.
    N.C. Singer, W.P. Seering, Preshaping command inputs to reduce system vibration. J. Dyn. Syst. Meas. Contr. 112(1), 76–82 (1990)CrossRefGoogle Scholar
  29. 29.
    A. Fleming, A. Wills, Optimal periodic trajectories for band-limited systems. IEEE Trans. Contr. Syst. Technol. 17(3), 552–562 (2009)CrossRefGoogle Scholar
  30. 30.
    I. Mahmood, S. Reza Moheimani, Fast spiral-scan atomic force microscopy. Nanotechnology 20, 365503 (2009)CrossRefGoogle Scholar
  31. 31.
    A. Kotsopoulos, T. Antonakopoulos, Nanopositioning using the spiral of archimedes: the probe-based storage case. Mechatronics 20(2), 273–280 (2010)CrossRefGoogle Scholar
  32. 32.
    A. Kotsopoulos, A. Pantazi, A. Sebastian, T. Antonakopoulos, High-speed spiral nanopositioning, in Proceedings of IFAC world congress, IFAC, pp. 2018–2023 (2011)Google Scholar
  33. 33.
    Y. Yong, S. Moheimani, I. Petersen, High-speed cycloid-scan atomic force microscopy. Nanotechnology 21, 365503 (2010)CrossRefGoogle Scholar
  34. 34.
    T. Tuma, J. Lygeros, V. Kartik, A. Sebastian, A. Pantazi, High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories. Nanotechnology 23, 185501 (2012)CrossRefGoogle Scholar
  35. 35.
    T. Tuma, J. Lygeros, A. Sebastian, A. Pantazi, Optimal scan trajectories for high speed scanning probe microscopy, in Proceedings of the 2012 American Control Conference, IEEE, pp. 3791–3796 (2012)Google Scholar
  36. 36.
    R. Goebel, R. Sanfelice, A. Teel, Hybrid dynamical systems. IEEE Contr. Syst. Mag. 29(2), 28–93 (2009)MathSciNetCrossRefGoogle Scholar
  37. 37.
    D. Liberzon, Switching in Systems and Control. Ser. Systems & Control: Foundations & Applications (Birkhäuser, Boston, 2003)MATHCrossRefGoogle Scholar
  38. 38.
    J.C. Clegg, A nonlinear integrator for servomechanisms. Trans. AIEE, Part II. Appl. Ind. 77(2), 41–42 (1958)Google Scholar
  39. 39.
    I. Horowitz, P. Rosenbaum, Non-linear design for cost of feedback reduction in systems with large parameter uncertainty. Int. J. Contr. 21, 977–1001 (1975)MATHCrossRefGoogle Scholar
  40. 40.
    D. Nesic, L. Zaccarian, A.R. Teel, Stability properties of reset systems. Automatica 44, 2019–2026 (2008)MathSciNetCrossRefGoogle Scholar
  41. 41.
    D. Wu, G. Guo, Y. Wang, Reset integral-derivative control for HDD servo systems. IEEE Trans. Contr. Syst. Technol. 15(1), 161–167 (2007)CrossRefGoogle Scholar
  42. 42.
    D.D. Bainov, P.S. Simeonov, Systems with Impulse Effect: Stability, Theory and Applications. Ser. Ellis Horwood Series: Mathematics and Its Applications. Chichester, UK (Ellis Horwood, 1989)Google Scholar
  43. 43.
    G. Schitter, K.J. Astrom, B.E. DeMartini, P.J. Thurner, K.L. Turner, P.K. Hansma, Design and modeling of a high-speed AFM-Scanner. IEEE Trans. Contr. Syst. Technol. 15(5), 906–915 (2007)CrossRefGoogle Scholar
  44. 44.
    S.O.R. Moheimani, B.J.G. Vautier, Resonant control of structural vibration using charge-driven piezoelectric actuators. IEEE Trans. Contr. Syst. Technol. 13(6), 1021–1035 (2005)CrossRefGoogle Scholar
  45. 45.
    A.J. Fleming, S.O.R. Moheimani, Sensorless vibration suppression and scan compensation for piezoelectric tube nanopositioners. IEEE Trans. Contr. Syst. Technol. 14(1), 33–44 (2006)CrossRefGoogle Scholar
  46. 46.
    A. Fleming, S. Moheimani, A grounded-load charge amplifier for reducing hysteresis in piezoelectric tube scanners. Rev. Sci. Instrum. 76(7), 073707 (2005)Google Scholar
  47. 47.
    A. Sebastian, S.O.R. Moheimani, Signal transformation approach to fast nanopositioning. Rev. Sci. Instrum. 80(7), 076101-1–076101-3 (2009)Google Scholar
  48. 48.
    A. Bazaei, S.O.R. Moheimani, A. Sebastian, An analysis of signal transformation approach to triangular waveform tracking. Automatica 47(4), 838–847 (2011)MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    A. Bazaei, Y. Yong, S. Moheimani, A. Sebastian, Tracking of triangular references using signal transformation for control of a novel AFM scanner stage. IEEE Trans. Contr. Syst. Technol. 20(2), 453–464 (2012)CrossRefGoogle Scholar
  50. 50.
    H. Rothuizen, M. Despont, U. Drechsler, C. Hagleitner, A. Sebastian, D. Wiesmann, Design of power-optimized thermal cantilevers for scanning probe topography sensing, in Proceedings of IEEE 22nd International Conference on Micro Electro Mechanical Systems, IEEE, pp. 603–606 (2009)Google Scholar
  51. 51.
    A. Sebastian, D. Wiesmann, Modeling and experimental identification of silicon microheater dynamics: a systems approach. IEEE/ASME J. Microelectromech. Syst. 17(4), 911–920 (2008)CrossRefGoogle Scholar
  52. 52.
    V. Kartik, A. Sebastian, T. Tuma, A. Pantazi, H. Pozidis, D. Sahoo, High-bandwidth nanopositioner with magnetoresistance based position sensing. Mechatronics 22, 295–301 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Tomas Tuma
    • 1
    • 2
  • Abu Sebastian
    • 1
  • John Lygeros
    • 2
  • Angeliki Pantazi
    • 1
  1. 1.IBM Research - ZurichRüschlikonSwitzerland
  2. 2.ETH ZurichZürichSwitzerland

Personalised recommendations