Skip to main content

Feedforward Control of Flexible and Nonlinear Piezoelectric Actuators

  • Chapter
  • First Online:
Smart Materials-Based Actuators at the Micro/Nano-Scale
  • 1555 Accesses

Abstract

In this chapter, the control without sensors, also called feedforward control, of piezoelectric actuators is proposed. Typified by hysteresis and creep nonlinearities and by badly damped vibration, the design of the controller (compensator) is based on precise models and on the inversion of the latter. For that, the hysteresis is first modeled and compensated by using the Prandtl–Ishlinskii technique. Then, the creep is treated. Finally, the badly damped vibration is modeled and controlled. Experimental results along the chapter demonstrate the efficiency of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Agnus, N. Chaillet, C. Clévy, S. Dembélé, M. Gauthier, Y. Haddab, G. Laurent, P. Lutz, N. Piat, K. Rabenorosoa, M. Rakotondrabe, B. Tamadazte, Robotic microassembly and micromanipulation at FEMTO-ST. J. Micro. Bio. Robot. (JMBR), 8(2), 91–106 (2013)

    Google Scholar 

  2. M. Rakotondrabe, C. Clévy, P. Lutz, Modelling and robust position/force control of a piezoelectric microgripper, in IEEE - International Conference on Automation Science and Engineering (CASE), Scottsdale, AZ, USA, 2007, pp. 39–44

    Google Scholar 

  3. M. Rakotondrabe, Y. Haddab, P. Lutz, Quadrilateral modelling and robust control of a nonlinear piezoelectric cantilever. IEEE - Trans. Contr. Syst. Technol. (T-CST) 17(3), 528–539 (2009)

    Google Scholar 

  4. M. Rakotondrabe, K. Rabenorosoa, J. Agnus, N. Chaillet, Robust feedforward-feedback control of a nonlinear and oscillating 2-dof piezocantilever. IEEE - Trans. Autom. Sci. Eng. (T-ASE) 8(3), 506–519 (2011)

    Google Scholar 

  5. S. Khadraoui, M. Rakotondrabe, P. Lutz, Interval modeling and robust control of piezoelectric microactuators. IEEE - Trans. Contr. Syst. Technol. (T-CST) 20(2), 486–494 (2012)

    Google Scholar 

  6. Y. Shan, K.K. Leang, Accounting for hysteresis in repetitive control design. Automatica 48(8), 1751–1758 (2012)

    Article  MathSciNet  Google Scholar 

  7. A. Sebastian, A. Gannepalli, M.V. Salapaka, A review of the systems approach to teh analysis of dynamic-mode atomic force microscopy. IEEE Trans. Contr. Syst. Technol. 15(5), 952–959 (2007)

    Article  Google Scholar 

  8. Q. Xu, Y. Li, Model predictive discrete-time sliding mode control of a nanopositioning piezostage without modeling hysteresis. IEEE Trans. Contr. Syst. Technol. 20(4), 983–994 (2012)

    Article  Google Scholar 

  9. A. Bazaei, Y.K. Yong, S.O.R. Moheimani, A. Sebastian, Tracking of triangular references using signal transformation for control of a novel AFM scanner stage. IEEE Trans. Contr. Syst. Technol. 20(2), 453–464 (2012)

    Article  Google Scholar 

  10. S. Devasia, E.E. Eleftheriou, R. Moheimani, A survey of control issues in nanopositioning. IEEE Trans. Contr. Syst. Technol. 15(5), 802–823 (2007)

    Article  Google Scholar 

  11. D. Croft, G. Shed, S. Devasia, Creep, hysteresis and vibration compensation for piezoactuators: atomic force microscopy application. ASME J. Dyn. Syst. Meas. Contr. 123(1), 35–43 (2001)

    Article  Google Scholar 

  12. A. Dubra, J. Massa, C.l. Paterson, Preisach classical and nonlinear modeling of hysteresis in piezoceramic deformable mirrors. Optic. Express 13(22), 9062–9070 (2005)

    Google Scholar 

  13. M. Rakotondrabe, C. Clévy, P. Lutz, Complete open loop control of hysteretic, creeped and oscillating piezoelectric cantilever. IEEE Trans. Autom. Sci. Eng. (TASE) 7(3), 440–450 (2010)

    Google Scholar 

  14. W.T. Ang, P.K. Kholsa, C.N. Riviere, Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications. IEEE/ASME Trans. Mechatron. 12(2), 134–142 (2007)

    Article  Google Scholar 

  15. B. Mokaberi, A.A.G. Requicha, Compensation of scanner creep and hysteresis for AFM nanomanipulation. IEEE Trans. ASE 5(2), 197–0208 (2008)

    Google Scholar 

  16. M. Al Janaideh, P. Krejci, Inverse rate-dependent Prandtl–Ishlinskii model for feedforward compensation of hysteresis in a piezomicropositioning actuator. IEEE/ASME Trans. Mechatron. (2012). doi:10.1109/TMECH.2012.2205265

    Google Scholar 

  17. M. Rakotondrabe, Classical Prandtl–Ishlinskii modeling and inverse multiplicative structure to compensate hysteresis in piezoactuators, in ACC (American Control Conference), Montréal, Canada, June 2012, pp. 1646–1651

    Google Scholar 

  18. M. Rakotondrabe, Bouc–Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators. IEEE Trans. ASE 8(2), 428–431 (2011)

    Google Scholar 

  19. H. Jung, J.Y. Shim, D. Gweon, New open-loop actuating method of piezoelectric actuators for removing hysteresis and creep. Rev. Sci. Instrum. 71(9), 3436–3440 (2000)

    Article  Google Scholar 

  20. G.M. Clayton, S. Tien, S. Devasia, A.J. Fleming, S.O.R. Moheimani, Inverse-feedforward of charge-controlled piezopositioners. Mechatronics 18, 273–281 (2008)

    Article  Google Scholar 

  21. M. Rakotondrabe, C. Clévy, P. Lutz, Hysteresis and vibration compensation in a nonlinear unimorph piezocantilever, in IEEE/RSJ - IROS, (International Conference on Intelligent Robots and Systems), Nice, France, Sept 2008, pp. 558–563

    Google Scholar 

  22. M. Rakotondrabe, Piezoelectric Cantilevered Structures: Modeling Control and Measurement/Estimation Aspects (Springer, Berlin, 2013)

    Google Scholar 

  23. R. Bouc, Forced vibration of mechanical systems with hysteresis, in Conference on Nonlinear Oscillation, Prague, 1967

    Google Scholar 

  24. Y.K. Wen, Method for random vibration of hysteresis systems. J. Eng. Mech. Div. 102(2), 249–263 (1976)

    Google Scholar 

  25. M. Jouaneh, H. Tian, Accuracy enhancement of a piezoelectric actuators with hysteresis, in ASME Japan/USA Symp. Flexible Automation, Proceedings of the Japan-USA Symposium on Flexible Automation, A Pacific Rim Conference, San Francisco, California, USA, ASME/ISCIE, ISBN 0-7918-0765-8, 1992, pp. 631–637

    Google Scholar 

  26. T.S. Low, W. Guo, Modeling of a three-layer piezoelectric bimorph beam with hysteresis. J. Microelectromech. Syst. 4(4), 230–237 (1995)

    Article  Google Scholar 

  27. L. Ljung, System identification toolbox, for use with Matlab. The Matworks (1995)

    Google Scholar 

  28. T. Singh, W. Singhose, Tutorial on input shaping/time delay control of maneuvering flexible structures, in American Control Conference, Proceedings of the American Control Conference, Anchorage Alaska USA, 2002, pp. 1717–1731

    Google Scholar 

  29. N.C. Singer, W.P. Seering, K.A. Pasch, Shaping command inputs to minimize unwanted dynamics. Patent No. US-4.916.635, 1990

    Google Scholar 

Download references

Acknowledgements

This work is supported by the national ANR-JCJC C-MUMS-project (National young investigator project ANR-12-JS03007.01: Control of Multivariable Piezoelectric Microsystems with Minimization of Sensors).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micky Rakotondrabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rakotondrabe, M. (2013). Feedforward Control of Flexible and Nonlinear Piezoelectric Actuators. In: Rakotondrabe, M. (eds) Smart Materials-Based Actuators at the Micro/Nano-Scale. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6684-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6684-0_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6683-3

  • Online ISBN: 978-1-4614-6684-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics