Homo sapiensCucurbita interaction in Mesoamerica: Domestication, Dissemination, and Diversification

  • Rafael Lira
  • Luis Eguiarte
  • Salvador Montes
  • Daniel Zizumbo-Villarreal
  • Patricia Colunga-García Marín
  • Mauricio Quesada
Chapter
Part of the Ethnobiology book series (EBL)

Abstract

Cucurbita are monoecious and creeping plants including 20 taxa and 15 species. In Mesoamerica, four species were domesticated or diversified after domestication in other geographic areas: C. argyrosperma C. pepo, C. moschata, and C. ficifolia. The earliest evidences of the domestication of Cucurbita date 9000 BP from Southwestern Mesoamerica and 10,000 BP from Southwestern Ecuador. The main targets of human selection were the seeds contained in larger and less bitter and toxic fruits (due to cucurbitacins), without vine detachment. C. argyrosperma ssp. sororia from México to Central America warm-humid and subhumid climates is considered the wild ancestor of the domesticated C. argyrosperma ssp. argyrosperma. For C. pepo, the proposed ancestor of the domesticated populations of México is C. pepo ssp. fraterna from northeastern Mexico, while the putative progenitor of the cultivars from in North America is C. pepo ssp. texana from eastern United States. For C moschata, there are two hypotheses as to its domestication region: southern Mesoamerica, or from the lowlands of Colombia and southern Ecuador. Cultivated C. ficifolia is found from the Mexican highlands south to Chile and Argentina, its center of domestication is either Central America or southern Mexico/Central America, as supported by linguistic evidence, or the Andes, as indicated by archaeological evidences from Peru dated at 3000 BC. Humans spread cultivated Cucurbita inside and out of Mesoamerica, structuring a complex agricultural system along with corn (Zea mays), and different species of beans (Phaseolus spp.) called “milpa,” that were established in a wide range of environments.

Keywords

Genetic resources Domestication Pumpkin Squash Mesoamerica 

References

  1. 1.
    Nee M. The domestication of Cucurbita. Econ Bot. 1990;44:56–68.CrossRefGoogle Scholar
  2. 2.
    Tapley WT, Enzie WD, Eseltine GP. The vegetables of New York, Part IV. New York: New York Agricultural Experiment Station; 1937.Google Scholar
  3. 3.
    Whitaker TW, Davis GN. Cucurbits: botany, cultivation, and utilization. New York: Interscience; 1962.Google Scholar
  4. 4.
    Merrick LC. Systematics and evolution of a domesticated squash, Cucurbita argyosperma, and its wild and weedy relatives. In: Bates DM, Robinson RW, Jeffrey C, editors. Biology and utilization of the cucurbitaceae. Ithaca: Cornell University Press; 1990. p. 77–95.Google Scholar
  5. 5.
    Lira R, Andres T, Nee M. Cucurbita. In: Lira R, editor. Estudios Taxonómicos y Ecogeográficos de las Cucurbitaceae Latinoamericanas de Importancia Económica: Cucurbita, Sechium, Sicana y Cyclanthera. Systematic and Ecogeographic Studies on Crop Gene Pools. 9. Rome: International Plant Genetic Resources Institute; 1995. p. 1–115.Google Scholar
  6. 6.
    Hurd PD, Linsley EG, Whitaker TW. Squash and gourd bees (Peponapis, Xenoglossa) and the origin of cultivated Cucurbita. Evolution. 1971;25:218–34.CrossRefGoogle Scholar
  7. 7.
    Jeffrey C. Appendix: an outline classification of the Cucurbitaceae. In: Bates DM, Robinson RW, Jeffrey C, editors. Biology and utilization of the Cucurbitaceae. Ithaca: Cornell University Press; 1990. p. 449–63.Google Scholar
  8. 8.
    Jeffrey C. A new system of Cucurbitaceae. [St. Petersburg] Botanicheskii Zhurnal. Moscow & leningrad. 2005;90:332–5.Google Scholar
  9. 9.
    Schaefer H, Renner SS. Phylogenetic relationships in the order Cucurbitales and a new classification of the gourd family (Cucurbitaceae). Taxonomy. 2011;60:122–38.Google Scholar
  10. 10.
    Bailey LH. Species of Cucurbita. Gentes Herb. 1943;7:267–316.Google Scholar
  11. 11.
    Bailey LH. Jottings in the Cucurbitas. Gentes Herb. 1948;7:449–77.Google Scholar
  12. 12.
    Esquinas Alcazar JT, Gulick PJ. Genetic resources of Cucurbitaceae. A global report. Rome: IBPGR Secretariat; 1983.Google Scholar
  13. 13.
    Zizumbo-Villarreal D, Colunga-GarcíaMarín P. Origin of agriculture and plant domestication in West Mesoamerica. Genet Resour Crop Evol. 2010;57:813–25.CrossRefGoogle Scholar
  14. 14.
    Wandsnider L. The roasted and the boiled: food composition and heat treatment with special emphasis on pit-hearth cooking. J Anthropol Archaeol. 1997;16:1–48.CrossRefGoogle Scholar
  15. 15.
    Thoms AV. Rock of ages: propagation of hot-rock cookery in Western North America. J Archaeol Sci. 2009;36:573–91.CrossRefGoogle Scholar
  16. 16.
    MacNeish RS. Ancient Mesoamerican civilization. Sci New Ser. 1964;143:531–7.Google Scholar
  17. 17.
    MacNeish RS, Nelken-Turner A. The preceramic of Mesoamerica. J Field Archaeol. 1983;10:71–84.Google Scholar
  18. 18.
    Flannery KV. Guilá Naquitz. Orlando: Academic; 1986.Google Scholar
  19. 19.
    Ranere AJ, Piperno DR, Holst I, Dickau R, Iriarte J. Preceramic human occupation of the Central Balsas Valley, Mexico: cultural context of early domesticated maize and squash. Proc Natl Acad Sci U S A. 2009;106:5014–8.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Piperno DR, Stothert E. Phytolith for early Holocene Cucurbita domestication in Southwest Ecuador. Science. 2003;299:1054–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Piperno DR, Ranere AJ, Holst I, Iriarte J, Dickau R. Starch grain and phytolith evidence for early ninth millennium BP maize from the Central Balsas River Valley, Mexico. Proc Natl Acad Sci U S A. 2009;106:5019–24.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zizumbo-Villarreal D, Flores-Silva A, Colunga-GarcíaMarín P. The archaic diet in Mesoamerica: incentive for milpa development and species domestication. Econ Bot. 2012;66:328–43.CrossRefGoogle Scholar
  23. 23.
    Hart PJ. Can Cucurbita pepo gourd seeds be made edible? J Archaeol Sci. 2004;31:1631–3.CrossRefGoogle Scholar
  24. 24.
    Brown CH, Luedeling E, Wichmann S, Epps P. The paleobiolinguistics of domesticated squash (Cucurbita spp.). In: Quinlan M, Lepofsky D, editors. Explorations in ethnobiology: the legacy of Amadeo Rea, Contributions in ethnobiology, vol. 1. The Society of Ethnobiology: Bristol; 2012. p. 132–61.Google Scholar
  25. 25.
    Piperno DR. Phytolithic analysis of geological sediments from Panama. Antiquity. 1985;59:13–9.CrossRefGoogle Scholar
  26. 26.
    Piperno DR, Pearsall DM. The origins of agriculture in the lowland neotropics. San Diego: Academic; 1998.Google Scholar
  27. 27.
    Dickau R. Microbotanical and macrobotanical evidence of plant use and the transition to agriculture in Panama. In: VanDerwarker AM, Peres TM, editors. Integrating zooarchaeology and paleoethnobotany: a consideration of issues, methods, and cases. New York: Springer; 2010. p. 99–134.CrossRefGoogle Scholar
  28. 28.
    Smith BD. Documenting plant domestication: the consilience of biological and archaeological approaches. Proc Natl Acad Sci U S A. 2001;98:1324–6.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Smith B. Seed size increase as a marker of domestication in Squash (Cucurbita pepo). In: Zeder MA, Emshwiller E, Smith BD, Bradley D, editors. Documenting domestication: the intersection of genetics and archaeology. Oakland: University of California Press; 2006. p. 25–31.Google Scholar
  30. 30.
    Piperno DR, Dillehay TD. Starch grains on human teeth reveal early broad crop diet in northern Peru. Proc Natl Acad Sci U S A. 2008;105:19622–7.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sanjur OI, Piperno DR, Andres TC, Wessel-Beaver L. Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from a mitochondrial gene: implications for crop plant evolution and areas of origin. Proc Natl Acad Sci U S A. 2002;99:535–40.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Paris HS, Kabelka E. Gene list for Cucurbita species 2009. Cucurbit genetics cooperative report, 2008–2009. p. 31–2, 44–69.Google Scholar
  33. 33.
    Andres T. Cucurbita fraterna, the closest wild relative and progenitor of C. pepo. Cucurbit Genet Coop Rep. 1987;10:69–71.Google Scholar
  34. 34.
    Decker-Walters DS. Evidence for multiple domestications of Cucurbita pepo. In: Bates DM, Robinson RW, Jeffrey C, editors. Biology and utilization of the Cucurbitaceae. Ithaca: Cornell University Press; 1990. p. 96–101.Google Scholar
  35. 35.
    Wilson HD, Doebley J, Duvall M. Chloroplast DNA diversity among wild and cultivated members of Cucurbita (Cucurbitaceae). Theor Appl Genet. 1992;84:859–65.PubMedGoogle Scholar
  36. 36.
    Paris HS, Yonash N, Portnoy V, Mozes-Daube N, Tzuri G, Katzir N. Assessment of genetic relationships in Cucurbita pepo (Cucurbitaceae) using DNA markers. Theor Appl Genet. 2003;106:971–8.PubMedGoogle Scholar
  37. 37.
    Gong L, Paris HS, Nee M, Stift G, Pachner M, Vollmann J, Lelley T. Genetic relationships and evolution in Cucurbita pepo (pumpkin, squash, gourd) as revealed by simple sequence repeat polymorphisms. Theor Appl Genet. 2012;124:875–91.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Smith BD, Yarnell RA. Initial formation of an indigenous crop complex in eastern North America at 3,800 B.P. Proc Natl Acad Sci USA. 2009;106:6561–6.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Provvidenti R. Viral diseases and genetic sources of resistance in Cucurbita species. In: Bates DM, Robinson RW, Jeffrey C, editors. Biology and utilization of the Cucurbitaceae. Ithaca: Cornell University Press; 1990. p. 427–35.Google Scholar
  40. 40.
    Garzon-Tiznado JA. Formación de variedades de calabacita tipo zucchini (Cucurbita spp.) resistentes a los virus mosaico del pepino y de la sandía. Informe de investigación del proyecto: Estudio y Control de las Enfermedades Virales en el Cultivo de la Calabacita. México: INIFAP SARH; 1989.Google Scholar
  41. 41.
    Whitaker TW. American origin of the cultivated cucurbits. Ann Mo Bot Gard. 1947;34:102–11.CrossRefGoogle Scholar
  42. 42.
    Bukasov SM. Las Plantas Cultivadas de Mexico, Guatemala y Colombia. Turrialba: CATIE-GTZ; 1981.Google Scholar
  43. 43.
    Cutler HC, Whitaker TW. A new species of Cucurbita from Ecuador. Ann Mo Bot Gard. 1969;55:392–6.CrossRefGoogle Scholar
  44. 44.
    Gong L, Stift G, Kofler R, Pachner M, Lelley T. Microsatellites for the genus Cucurbita and an SSR-based genetic linkage map of Cucurbita pepo L. Theor Appl Genet. 2008;117:37–48.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Cerón-González L, Legaria-Solano JP, Villanueva-Verduzco C, Sahagún-Castellanos J. Diversidad genética en cuatro especies mexicanas de calabaza (Cucurbita spp.). Rev Fitotec Mex. 2010;33:189–96.Google Scholar
  46. 46.
    Barboza N, Albertazzia FJ, Sibaja-Cordero JA, Mora-Umaña F, Astorga C, Ramírez P. Analysis of genetic diversity of Cucurbita moschata (D.) germplasm accessions from Mesoamerica revealed by PCR SSCP and chloroplast sequence data. Sci Hortic. 2012;134:60–71.CrossRefGoogle Scholar
  47. 47.
    Andres T. Biosystematics, theories on the origin and breeding potential of Cucurbita ficifolia. In: Bates DM, Robinson RW, Jeffrey C, editors. Biology and utilization of the cucurbitaceae. Ithaca: Cornell University Press; 1990. p. 102–19.Google Scholar
  48. 48.
    West-Eberhard MJ. Developmental plasticity and evolution. Oxford: Oxford University Press; 2003.Google Scholar
  49. 49.
    Wilson HD, Lira R, Rodriguez I. Crop/weed gene flow: Cucurbita argyrosperma Huber and C. fraterna L.H. Bailey. Econ Bot. 1994;48:293–300.CrossRefGoogle Scholar
  50. 50.
    Montes-Hernández S, Eguiarte L. Genetic structure and indirect estimates of gene flow in three taxa of Cucurbita (Cucurbitaceae) in western Mexico. Am J Bot. 2002;89:1156–63.CrossRefPubMedGoogle Scholar
  51. 51.
    Spencer NJ, Snow AA. Fecundity of transgenic wild-crop hybrids of Cucurbita pepo (Cucurbitaceae): implications for crop-to-wild gene flow. Heredity. 2001;86:694–702.CrossRefPubMedGoogle Scholar
  52. 52.
    Cruz-Reyes R, Ávila Sakar G, Sanchez-Montoya G, Quesada M. Experimental assessment of gene flow between transgenic squash and a wild relative in the center of origin of Cucurbits. Ecosphere. 6(12):art248;2015.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Rafael Lira
    • 1
  • Luis Eguiarte
    • 2
  • Salvador Montes
    • 3
  • Daniel Zizumbo-Villarreal
    • 4
    • 5
  • Patricia Colunga-García Marín
    • 4
    • 5
  • Mauricio Quesada
    • 6
  1. 1.Unidad de Biotecnología y Prototipos (UBIPRO)FES Iztacala, Universidad Nacional Autónoma de MéxicoTlalnepantlaMexico
  2. 2.Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de MéxicoMéxico, Distrito FederalMexico
  3. 3.Instituto Nacional de Investigaciones Forestales, Agrícolas y PecuariasCampo Experimental BajíoCelayaMexico
  4. 4.Dpto. Agricultura, Sociedad y Ambiente. El Colegio de la Frontera SurSan Cristóbal de las CasasMéxico
  5. 5.Centro de Investigación Científica de Yucatán.MéridaMéxico
  6. 6.Instituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES)Universidad Nacional Autónoma de MéxicoMoreliaMexico

Personalised recommendations