Skip to main content

Reliable Tool Life Estimation with Multiple Acoustic Emission Signal Feature Selection and Integration Based on Type-2 Fuzzy Logic

  • Chapter
  • First Online:
Advances in Type-2 Fuzzy Sets and Systems

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 301))

Abstract

Reliable tool life estimation of cutting tool in micromilling is essential for planning machining operations for maximum productivity and quality. This chapter presents type-2 fuzzy tool life estimation system. In this system, type-2 fuzzy analysis is used as not only a powerful tool to model acoustic emission signal features, but also a great estimator for the ambiguities and uncertainties associated with them. Depending on the estimation of root-mean-square-error and variations in modeling results of all signal features, reliable ones are selected and integrated to cutting tool life estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tansel, I., Rodriguez, O., Trujillo, M., Paz, E., Li, W.: Micro-end-milling—I, wear and breakage. Int. J. Mach. Tools Manuf. 38, 1419–1436 (1998)

    Article  Google Scholar 

  2. Wang, L.H., Gao Robert, X.: Condition monitoring and control for intelligent manufacturing. Springer Series in Advanced Manufacturing, ISBN: 978-1-84628-268-3 (2006)

    Google Scholar 

  3. Chae, J., Park, S.S., Freiheit, T.: Investigation of micro-cutting operations. J. Mach. Tools Manuf. 46, 313–332 (2006)

    Article  Google Scholar 

  4. Jemielniak, K., Arrazola, P.J.: Application of AE and cutting force signals in tool condition monitoring in micro-milling. CIRP J. Manuf. Sci. Technol. 1, 97–102 (2008)

    Article  Google Scholar 

  5. Jemielniak, K., Bombinski, S., Aristimuno, P.X.: Tool condition monitoring in micromilling based on hierarchical integration of signal measures. CIRP Ann. Manuf. Technol. 57, 121–124 (2008)

    Article  Google Scholar 

  6. Ren, Q., Baron, L., Balazinski, M.: Type-2 fuzzy modeling for acoustic emission signal in precision manufacturing, Model. Simul. Eng. 2011(696947) (2011). doi: 10.1155/2011/696947

    Google Scholar 

  7. Ren, Q., Baron, L., Balazinski, M.: Fuzzy identification of cutting acoustic emission with extended subtractive cluster analysis. Nonlinear Dyn. 67(4), 2599–2608 (2012)

    Article  Google Scholar 

  8. Ren, Q., Baron, L., Jemielniak, K., Balazinski, M.: Acoustic emission signal feature analysis using type-2 fuzzy logic system. In: Proceedings of the 29th North American Fuzzy Information Processing Society Annual Conference NAFIPS 2010, pp. 1–6. Toronto, Canada (2010)

    Google Scholar 

  9. Tansel, I.N., Arkan, T.T., Bao, W.Y., et al.: Tool wear estimation in micro-machining. Int. J. Mach. Tools Manuf. 40, 599–608 (2000)

    Article  Google Scholar 

  10. Teti, R., Jemielniak, K., O’Donnell, G., Dornfeld, D.: Advanced monitoring of machining operations. CIRP Ann. Manuf. Technol. 59, 717–739 (2010)

    Article  Google Scholar 

  11. Moriwaki, T.: Application of acoustic measurements to sensing of wear and breakage of cutting tool, bull. Jpn. Soc. Precis. Eng. 17(3) (1983)

    Google Scholar 

  12. Sugeno, M., Kang, G.: Structure identification of fuzzy model. Fuzzy Sets Syst. 28(1), 15–33 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man. Cybern. 15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  14. Zadeh, L.A.: The conception of a linguistic variable and its application in approximate reasoning—I. Inf. Sci. 8, 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mizumoto, M., Tanaka, K.: Fuzzy sets of type 2 under algebraic product and algebraic sum. Fuzzy Sets Syst. 5(3), 277–290 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. John, R.I.: Type-2 fuzzy sets: an appraisal of theory and applications. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 6(6), 563–576 (1998)

    Article  MATH  Google Scholar 

  17. Karnik, N.N., Mendel, J.M.: Centroid of a type-2 fuzzy set. Inf. Sci. 132(1–4), 195–220 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mendel, J.M.: Uncertain Rule-Based Fuzzy logic Systems—Introduction on New Directions. Prentice hall PTR, Upper Saddle River (2001)

    Google Scholar 

  19. Liang, Q., Mendel, J.M.: An introduction to type-2 TSK fuzzy logic systems, In: Proceedings of IEEE FUZZ Conference, Seoul, Korea (1999)

    Google Scholar 

  20. Ren, Q., Baron, L., Balazinski, M.: (2008) High order type-2 TSK fuzzy logic system. NAFIPS 2008. New York, USA, 1–6

    Google Scholar 

  21. Ren, Q., Balazinski, M., Baron, L.: High order interval type-2 Takagi-Sugeno-Kang fuzzy logic system and its application in acoustic emission signal modeling in turning process. Int. J. Adv. Manuf. Technol. (2012). doi:10.1007/s00170-012-3956-z

    Google Scholar 

  22. Hagras, H.: Type-2 FLCs: a new generation of fuzzy controllers. IEEE Comput. Intell. Mag. 2(1), 30–43 (2007)

    Article  Google Scholar 

  23. Castillo, O., Melin, P.: Intelligent systems with interval type-2 fuzzy logic. Int. J. Innov. Comput. Inf. Control 4(4), 771–783 (2008)

    Google Scholar 

  24. Wu, D., Tan, W.W.: A simplified type-2 fuzzy logic controller for real-time control. ISA Trans. 45(4), 503–516 (2006)

    Article  Google Scholar 

  25. John, R., Coupland, S.: Type-2 fuzzy logic: a historical view. IEEE Comput. Intell. Mag. 2(1), 57–62 (2007)

    Article  Google Scholar 

  26. Mendel, J.M.: Advances in type-2 fuzzy sets and systems. Inf. Sci. 177(1), 84–110 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ren, Q., Baron, L., Balazinski, M., Jemielniak K.: tool condition monitoring using the tsk fuzzy approach based on subtractive clustering method. News Frontiers in Applied Artificial Intelligence, pp. 52–56, Springer-Verlag, Berlin (2008)

    Google Scholar 

  28. Ren, Q., Baron, L., Balazinski, M., Jemielniak, K.: TSK fuzzy modeling for tool wear condition in turning processes: an experimental study. Eng. Appl. Artif. Intell. 24(2), 260–265 (2011)

    Article  Google Scholar 

  29. Jemielniak, K., Bombinski, S.: Hierarchical strategies in tool wear monitoring. J. Eng. Manuf. 223(B3), 375–382 (2006)

    Google Scholar 

Download references

Acknowledgments

The data for the experimental study described in this chapter were collected by Micromachining Laboratory at Mondragón University in Spain, in collaboration with Prof. Krzysztof Jemielniak.

The authors wish to acknowledge the anonymous reviewers for their detailed and helpful comments to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ren, Q., Baron, L., Balazinski, M., Jemielniak, K. (2013). Reliable Tool Life Estimation with Multiple Acoustic Emission Signal Feature Selection and Integration Based on Type-2 Fuzzy Logic. In: Sadeghian, A., Mendel, J., Tahayori, H. (eds) Advances in Type-2 Fuzzy Sets and Systems. Studies in Fuzziness and Soft Computing, vol 301. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6666-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6666-6_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6665-9

  • Online ISBN: 978-1-4614-6666-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics