Advertisement

p-Adic Hecke L-Functions and Their μ-Invariants

  • Haruzo Hida
Chapter
Part of the Springer Monographs in Mathematics book series (SMM)

Abstract

We first recall the construction of p-adic Hecke L-functions. We follow Katz [K2] and [HT2], which covers general CM fields also.

Keywords

Prime Ideal Eisenstein Series Integral Ideal Prime Element Ideal Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [EDM]
    G. Shimura, Elementary Dirichlet Series and Modular Forms. Springer Monographs in Mathematics (Springer, New York, 2007)Google Scholar
  2. [IEC]
    E. de Shalit, Iwasawa Theory of Elliptic Curves with Complex Multiplication. p-Adic L Functions. Perspectives in Mathematics, vol. 3 (Academic Press, Boston, 1987)Google Scholar
  3. [LFE]
    H. Hida, Elementary Theory of L-Functions and Eisenstein Series. London Mathematical Society Student Texts, vol. 26 (Cambridge University Press, Cambridge, 1993)Google Scholar
  4. [BuH]
    A. Burungale, M.-L. Hsieh, The vanishing of the \(\mu\)-invariant of p-adic Hecke L-functions for CM fields. Int. Math. Res. Not. (2012): rns019. doi:10.1093/imrn/rns019Google Scholar
  5. [CzS]
    P. Colmez, L. Schneps, p-Adic interpolation of special values of Hecke L-functions. Compos. Math. 82, 143–187 (1992)Google Scholar
  6. [Fi2]
    T. Finis, The \(\mu\)-invariant of anticyclotomic L-functions of imaginary quadratic fields. J. Reine Angew. Math. 596, 131–152 (2006)MathSciNetzbMATHGoogle Scholar
  7. [Gi2]
    R. Gillard, Remarques sur l’invariant mu d’Iwasawa dans le cas CM, Sém. Théorie Nombres, Bordeaux 3, 13–26 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  8. [H10a]
    H. Hida, The Iwasawa \(\mu\)-invariant of p-adic Hecke L-functions. Ann. Math. 172, 41–137 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  9. [H11b]
    H. Hida, Vanishing of the \(\mu\)-invariant of p-adic Hecke L-functions. Compos. Math. 147, 1151–1178 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  10. [HT1]
    H. Hida, J. Tilouine, Anticyclotomic Katz p-adic L-functions and congruence modules. Ann. Sci. Éc. Norm. Sup. 4th series 26, 189–259 (1993)Google Scholar
  11. [HT2]
    H. Hida, J. Tilouine, On the anticyclotomic main conjecture for CM fields. Invent. Math. 117, 89–147 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  12. [Hs2]
    M.-L. Hsieh, On the \(\mu\)-invariant of anticyclotomic p-adic L-functions for CM fields. J. Reine Angew. Math. (in press). doi:10.1515/crelle-2012-0056, http://www.math.ntu.edu.tw/~mlhsieh/research.htm)
  13. [K2]
    N.M. Katz, p-Adic L-functions for CM fields. Invent. Math. 49, 199–297 (1978)Google Scholar
  14. [Scn]
    L. Schneps, On the \(\mu\)-invariant of p-adic L-functions attached to elliptic curves with complex multiplication. J. Number Theor. 25, 20–33 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  15. [Y]
    R. Yager, p-Adic measures on Galois groups. Invent. Math. 76, 331–343 (1984)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Haruzo Hida
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaLos AngelesUSA

Personalised recommendations