Skip to main content

Analysis of Respiration as an Indicator of Oocyte and Embryo Developmental Potential

  • Chapter
  • First Online:
Human Gametes and Preimplantation Embryos
  • 1300 Accesses

Abstract

Reproductive aging in women occurs almost exclusively in the oocyte, which opens the possibility of developing improved single cell assays of oocyte and embryo dysfunction. Disruption of mitochondrial function and production of reactive oxygen are the cornerstones of one of the most widely established theories of cellular aging, and evidence suggests mitochondria and metabolism also underlie oocyte and embryo senescence. The physiology of the early embryo may be indicative of embryo viability and therefore methods to noninvasively monitor physiological parameters of embryos could improve the prediction of preimplantation embryo development. The self-referencing electrophysiological technique is capable of noninvasive measurement of the physiology of individual cells by monitoring the gradient of oxygen that develops around the cell as it consumes oxygen. We used this technique to monitor gradients of oxygen around individual preimplantation embryos. The oxygen-sensitive, self-referencing electrode identifies an extensive gradient of reduced dissolved oxygen concentration surrounding embryos, which extends tens of micrometers into the culture media. We also demonstrated that monitoring the physiology of embryos using the self-referencing technique does not compromise their subsequent development—blastocysts studied with the self-referencing oxygen electrode technique implanted and developed to term at the same rate as control embryos. Growing evidence from a number of groups that have adapted the self-referencing electrode technique to study bovine and human embryos suggests that the self-referencing electrode provides a valuable noninvasive technique for studying the physiology and pathophysiology of individual embryos, including human embryos, without hindering their subsequent development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilding M, Di Matteo L, Dale B. The maternal age effect: a hypothesis based on oxidative phosphorylation. Zygote. 2005;13(4):317–23.

    Article  PubMed  CAS  Google Scholar 

  2. Seifer DB, DeJesus V, Hubbard K. Mitochondrial deletions in luteinized granulosa cells as a function of age in women undergoing in vitro fertilization. Fertil Steril. 2002;78(5):1046–8.

    Article  PubMed  Google Scholar 

  3. Shigenaga MK, Hagen TM, Ames BN. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA. 1994;91(23):10771–8.

    Article  PubMed  CAS  Google Scholar 

  4. Van Blerkom J, Davis PW, Lee J. ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer. Hum Reprod. 1995;10(2):415–24.

    PubMed  CAS  Google Scholar 

  5. Keefe DL et al. Mitochondrial deoxyribonucleic acid deletions in oocytes and reproductive aging in women. Fertil Steril. 1995;64(3):577–83.

    PubMed  CAS  Google Scholar 

  6. Thouas GA et al. Mitochondrial dysfunction in mouse oocytes results in preimplantation embryo arrest in vitro. Biol Reprod. 2004;71(6):1936–42.

    Article  PubMed  CAS  Google Scholar 

  7. Reynier P et al. Mitochondrial DNA content affects the fertilizability of human oocytes. Mol Hum Reprod. 2001;7(5):425–9.

    Article  PubMed  CAS  Google Scholar 

  8. May-Panloup P et al. Low oocyte mitochondrial DNA content in ovarian insufficiency. Hum Reprod. 2005;20(3):593–7.

    Article  PubMed  CAS  Google Scholar 

  9. Wai T et al. The role of mitochondrial DNA copy number in mammalian fertility. Biol Reprod. 2010;83(1):52–62.

    Article  PubMed  CAS  Google Scholar 

  10. Wai T, Teoli D, Shoubridge EA. The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat Genet. 2008;40(12):1484–8.

    Article  PubMed  CAS  Google Scholar 

  11. Bentov Y et al. The contribution of mitochondrial function to reproductive aging. J Assist Reprod Genet. 2011;28(9):773–83.

    Article  PubMed  Google Scholar 

  12. Inoue K et al. Generation of mice with mitochondrial dysfunction by introducing mouse mtDNA carrying a deletion into zygotes. Nat Genet. 2000;26(2):176–81.

    Article  PubMed  CAS  Google Scholar 

  13. Pikó L, Matsumoto L. Number of mitochondria and some properties of mitochondrial DNA in the mouse egg. Dev Biol. 1976;49:1–10.

    Article  PubMed  Google Scholar 

  14. Jansen RP, de Boer K. The bottleneck: mitochondrial imperatives in oogenesis and ovarian follicular fate. Mol Cell Endocrinol. 1998;145:81–8.

    Article  PubMed  CAS  Google Scholar 

  15. Taanman JW. The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta. 1999;1410:103–23.

    Article  PubMed  CAS  Google Scholar 

  16. Keefe DL, Niven-Fairchild T, Powell S, Buradagunta S. mtDNA deletion in oocytes and reproductive aging in women. Fertil Steril. 1995;64:577–83.

    PubMed  CAS  Google Scholar 

  17. Barritt JA, Brenner CA, Cohen J, Matt DW. Mitochondrial DNA rearrangements in human oocytes and embryos. Mol Hum Reprod. 1999;5:927–33.

    Article  PubMed  CAS  Google Scholar 

  18. Dragiou I, Benetato G, Opreanu R. Recherches sur la respiration des ovocytes des mammiféres. C R Soc Biol. 1937;126:1044–6.

    Google Scholar 

  19. Boell EJ, Needham J. Morphogenesis and metabolism: studies with the Cartesian diver apparatus I, II, III, IV. Proc R Soc Lond (B). 1939;127:322–87.

    Article  CAS  Google Scholar 

  20. Boell EJ, Nicholas JS. Respiratory metabolism of mammalian eggs and embryos. Anat Rec. 1939;75(Suppl):66.

    Google Scholar 

  21. Fridhandler I, Hafez ESE, Pincus G. Developmental changes in the respiratory activity of rabbit ova. Exp Cell Res. 1957;13:132–9.

    Article  PubMed  CAS  Google Scholar 

  22. Boell EJ, Nicholas JS. Respiratory metabolism of the mammalian egg. J Exp Zool. 1948;109:267–81.

    Article  PubMed  CAS  Google Scholar 

  23. Mills RM, Brinster RL. Oxygen consumption of preimplantation mouse embryos. Exp Cell Res. 1967;47:337–44.

    Article  Google Scholar 

  24. Magnusson C, Hillensjö T, Hamberger L, Nillson L. Oxygen consumption by human oocytes and blastocysts grown in vitro. Hum Reprod. 1986;1:183–4.

    PubMed  CAS  Google Scholar 

  25. Magnusson C, Hillensjö T, Tsafriri A, Hultborn R, Ahrén K. Oxygen consumption of maturing rat ovaries. Biol Reprod. 1977;17:9–15.

    PubMed  CAS  Google Scholar 

  26. Nilsson BO, Magnusson C, Widéhn S, Hillensjö T. Correlation between blastocysts oxygen consumption and trophoblast cytochrome oxidase reaction and initiation of implantation of delayed mouse blastocysts. J Embryol Exp Morphol. 1982;71:75–82.

    PubMed  CAS  Google Scholar 

  27. Overstrom EW, Duby RT, Dobrinsky J, Roche JF, Boland MP. Viability and oxidative metabolism of the bovine blastocyst. Theriogenology. 1992;37:269.

    Article  Google Scholar 

  28. Benos DJ, Balaban RS. Energy requirements of the developing mammalian blastocyst for active ion transport. Biol Reprod. 1980;23:941–7.

    Article  PubMed  CAS  Google Scholar 

  29. Manes C, Lai NC. Nonmitochondrial oxygen utilization by rabbit blastocysts and surface production of superoxide radicals. J Reprod Fertil. 1995;104:69–75.

    Article  PubMed  CAS  Google Scholar 

  30. Houghton FD, Thompson JG, Kennedy CJ, Leese HJ. Oxygen consumption and energy metabolism of the early mouse embryo. Mol Reprod Dev. 1996;44:476–85.

    Article  PubMed  CAS  Google Scholar 

  31. Smith PJS. The non-invasive probes—tools for measuring transmembrane ion flux. Nature. 1995;378:645–6.

    Article  PubMed  CAS  Google Scholar 

  32. Smith PJS, Hammar K, Porterfield DM, Sanger RH, Trimarchi JR. A self-referencing, non-invasive, ion-selective electrode for single cell detection of trans-plasma membrane calcium flux. Microsc Res Tech. 1999;46:398–417.

    Article  PubMed  CAS  Google Scholar 

  33. Land SC, Porterfield DM, Sanger RH, Smith PJS. The self-referencing oxygen-selective microelectrode: detection of transmembrane oxygen flux from single cells. J Exp Biol. 1999;202:211–8.

    PubMed  CAS  Google Scholar 

  34. Porterfield DM, Trimarchi JR, Keefe DL, Smith PJS. Characterization of oxygen and calcium fluxes from early mouse embryos and oocytes. Biol Bull. 1998;195:208–9.

    Article  PubMed  CAS  Google Scholar 

  35. Liu L, Trimarchi JR, Keefe DL. Thiol oxidation-induced embryonic cell death in mice is prevented by the antioxidant dithiothreitol. Biol Reprod. 1999;61:1162–9.

    Article  PubMed  CAS  Google Scholar 

  36. Lane M, Gardner DK. Selection of viable mouse blastocysts prior to transfer using metabolic criterion. Hum Reprod. 1996;11:1975–96.

    Article  PubMed  CAS  Google Scholar 

  37. Gott AL, Hardy K, Winston RM, Leese HJ. Non-invasive measurement of pyruvate and glucose uptake and lactate production by single human preimplantation embryos. Hum Reprod. 1990;5:104–8.

    PubMed  CAS  Google Scholar 

  38. Wokosin DL, White JG, Bavister BD, Squirrell JM. Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat Biotechnol. 1999;17:763–7.

    Article  PubMed  Google Scholar 

  39. Ray PF, Ao A, Taylor DM, Winston RM, Handyside AH. Assessment of the reliability of single blastomere analysis for preimplantation diagnosis of the delta F508 deletion causing cystic fibrosis in clinical practice. Prenat Diagn. 1998;18:1402–12.

    Article  PubMed  CAS  Google Scholar 

  40. Muggleton-Harris AL, Glazier AM, Pickering S, Wall M. Genetic diagnosis using polymerase chain reaction and fluorescent in-situ hybridization analysis of biopsied cells from both the cleavage and blastocyst stages of individual cultured human preimplantation embryos. Hum Reprod. 1995;10:183–92.

    Article  PubMed  CAS  Google Scholar 

  41. Emmanouilidou E, Teschemacher AG, Pouli AE, Nicholls LI, Seward EP, Rutter GA. Imaging Ca(2+) concentration changes at the secretory vesicle surface with a recombinant targeted cameleon. Curr Biol. 1999;9:915–8.

    Article  PubMed  CAS  Google Scholar 

  42. Pollok BA, Heim R. Using GFP in FRET-based applications. Trends Cell Biol. 1999;9:57–60.

    Article  PubMed  CAS  Google Scholar 

  43. Stryer L. Biochemistry. New York: WH Freeman and Company; 1988.

    Google Scholar 

  44. Moessner J, Dodson WC. The quality of human embryo growth is improved when embryos are cultured in groups rather than separately. Fertil Steril. 1995;64:1034–5.

    PubMed  CAS  Google Scholar 

  45. Gardner DK, Lane MW, Lane M. Development of the inner cell mass in mouse blastocysts is stimulated by reducing the embryo:incubation volume ratio. Hum Reprod. 1997;12:182–3.

    Google Scholar 

  46. Fridhandler L. Pathways of glucose metabolism in fertilized rabbit ova at various pre-implantation stages. Exp Cell Res. 1961;22:303–16.

    Article  PubMed  CAS  Google Scholar 

  47. Biggers JD, Borland RM. Physiological aspects of growth and development of the preimplantation embryo. Annu Rev Physiol. 1976;38:95–119.

    Article  PubMed  CAS  Google Scholar 

  48. Leese HJ. Metabolic control during preimplantation mammalian development. Hum Reprod Update. 1995;1:63–72.

    Article  PubMed  CAS  Google Scholar 

  49. Manes C. Cyanide-resistant reduction of nitroblue ­tetrazolium and hydrogen peroxide production by the rabbit blastocyst. Mol Reprod Dev. 1992;31:114–21.

    Article  PubMed  CAS  Google Scholar 

  50. Balling R, Haaf H, Maydl R, Metzler M, Beier HM. Oxidative and conjugative metabolism of diethylstilbestrol by rabbit preimplantation embryos. Dev Biol. 1985;109:370–4.

    Article  PubMed  CAS  Google Scholar 

  51. Filler R, Lew KJ. Developmental onset of mixed function oxidase activity in preimplantation embryos. Proc Natl Acad Sci USA. 1981;78:6991–5.

    Article  PubMed  CAS  Google Scholar 

  52. Curnutte JT, Babior BM. Chronic granulomatous disease. Adv Hum Genet. 1987;16:229–97.

    PubMed  CAS  Google Scholar 

  53. Kumar S, Acharya SK. 2,6-Dichloro-phenol indophenol prevents switch-over of electrons between the cyanide-sensitive and -insensitive pathway of the mitochondrial electron transport chain in the presence of inhibitors. Anal Biochem. 1999;268:89–93.

    Article  PubMed  CAS  Google Scholar 

  54. Mackler B, Grace R, Haynes B, Bargman GJ, Shepard TH. Studies of mitochondrial energy systems during embryogenesis in the rat. Arch Biochem Biophys. 1973;158:885–8.

    Article  Google Scholar 

  55. Shepard TH, Muffley LA, Smith LT. Ultrastructural study of mitochondria and their cristae on embryonic rats and primates (N. nemistrina). Anat Rec. 1998;252:383–92.

    Article  PubMed  CAS  Google Scholar 

  56. Hillman N, Tasca R. Ultrastructural autoradiographic studies of mouse cleavage stages. Am J Anat. 1969;126:151–74.

    Article  PubMed  CAS  Google Scholar 

  57. Stern S, Biggers J, Anderson E. Mitochondria and early development of the mouse. J Exp Zool. 1971;176:179–92.

    Article  PubMed  CAS  Google Scholar 

  58. Calarco PG, Brow EH. An ultrastructural and cytological study of preimplantation development of the mouse. J Exp Zool. 1969;171:253–83.

    Article  PubMed  CAS  Google Scholar 

  59. Chech S, Sedlácková M. Ultrastructure and morphometric analysis of preimplantation mouse embryos. Cell Tissue Res. 1983;230:661–70.

    Article  Google Scholar 

  60. Pikó L. Synthesis of macromolecules in early mouse embryos cultured in vitro: RNA, DNA, and polysaccharide component. Dev Biol. 1970;21:257–79.

    Article  PubMed  Google Scholar 

  61. Pikó L, Chase DG. Role of the mitochondrial genome during early development in mice. Effects of ethidium bromide and chloramphenicol. J Cell Biol. 1973;58:357–78.

    Article  PubMed  Google Scholar 

  62. Taylor KD, Pikó L. Mitochondrial biogenesis in early mouse embryos: expression of the mRNAs for subunits IV, Vb, and VIIc of cytochrome C oxidase and subunit 9 (PI) of H+-ATP synthase. Mol Reprod Dev. 1995;40:29–35.

    Article  PubMed  CAS  Google Scholar 

  63. Pikó L, Taylor KD. Amounts of mitochondrial DNA and abundance of some mitochondrial gene transcripts in early mouse embryos. Dev Biol. 1976;123:364–74.

    Article  Google Scholar 

  64. Ginsberg L, Hillman N. Shifts in ATP synthesis during preimplantation stages of mouse embryos. J Reprod Fertil. 1975;43:83–90.

    Article  PubMed  CAS  Google Scholar 

  65. Ginsberg L, Hillman N. ATP metabolism in cleavage-staged mouse embryos. J Embryol Exp Morphol. 1973;30:267–82.

    PubMed  CAS  Google Scholar 

  66. Brinster RL. Carbon dioxide production from glucose by the preimplantation mouse embryo. Exp Cell Res. 1967;47:271–7.

    Article  PubMed  CAS  Google Scholar 

  67. Gardner DK, Lane M. Culture of viable human blastocysts in defined sequential serum-free media. Hum Reprod. 1998;13(Suppl):148–59.

    Article  PubMed  Google Scholar 

  68. Crompton M. The mitochondria permeability transition pore and its role in cell death. Biochem J. 1999;341:233–49.

    Article  PubMed  CAS  Google Scholar 

  69. Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 1999;13:1899–911.

    Article  PubMed  CAS  Google Scholar 

  70. Lopes AS, Larsen LH, Ramsing N, Løvendahl P, Räty M, Peippo J, et al. Respiration rates of individual bovine in vitro-produced embryos measured with a novel, non-invasive and highly sensitive microsensor system. Reproduction. 2005;130(5):669–79.

    Article  PubMed  CAS  Google Scholar 

  71. Lopes AS, Madsen SE, Ramsing NB, Løvendahl P, Greve T, Callesen H. Investigation of respiration of individual bovine embryos produced in vivo and in vitro and correlation with viability following transfer. Hum Reprod. 2007;22(2):558–66.

    Article  PubMed  CAS  Google Scholar 

  72. Agung B, Otoi T, Abe H, Hoshi H, Murakami M, Karja NW, et al. Relationship between oxygen consumption and sex of bovine in vitro fertilized embryos. Reprod Domest Anim. 2005;40(1):51–6.

    Article  PubMed  CAS  Google Scholar 

  73. Tejera A, Herrero J, de Los Santos MJ, Garrido N, Ramsing N, Meseguer M. Oxygen consumption is a quality marker for human oocyte competence conditioned by ovarian stimulation regimens. Fertil Steril. 2001;96(3):618–623.e.2.

    Article  Google Scholar 

  74. Yamanaka M, Hashimoto S, Amo A, Ito-Sasaki T, Abe H, Morimoto Y. Developmental assessment of human vitrified-warmed blastocysts based on oxygen consumption. Hum Reprod. 2011;26(12):3366–71.

    Article  PubMed  CAS  Google Scholar 

  75. Trimarchi JR, Liu L, Porterfield DM, Smith PJ, Keefe DL. Oxidative phosphorylation-dependent and -independent oxygen consumption by individual ­preimplantation mouse embryos. Biol Reprod. 2000;62(6):1866–74.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Keefe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Keefe, D.L. (2013). Analysis of Respiration as an Indicator of Oocyte and Embryo Developmental Potential. In: Gardner, D., Sakkas, D., Seli, E., Wells, D. (eds) Human Gametes and Preimplantation Embryos. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6651-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6651-2_21

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6650-5

  • Online ISBN: 978-1-4614-6651-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics