Mass Spectrometry, Proteomics, and the Study of Sperm Cell Biology



Advances in mass spectrometry are revolutionizing biological sciences. It is our belief that over next decade a systems-biology ‘omics’ revolution will come to dominate our thinking. As a result of this revolution we shall be able to provide detailed insights into the composition and structure of specified cells and biological fluids in different physiological and pathological states. This information will be invaluable in its own right as a source of biomarkers for diagnostic purposes and will, in addition, facilitate our understanding of some of the biochemical pathways associated with normal and abnormal cell function. In the microcosm of andrology, the application of ‘omics’ technologies will not only facilitate our understanding of how sperm biology is regulated, but also help us to resolve the defects that underpin male infertility and provide insights into possible approaches to male contraception. Never before have we had such sophistication at the call of researchers determined to resolve the molecular mechanisms regulating sperm function.


Sperm Cell Sperm Nucleus Sperm Capacitation Outer Dense Fiber Caudal Epididymal Sperm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Pascal LE, True LD, Campbell DS, Deutsch EW, Risk M, Coleman IM, et al. Correlation of mRNA and protein levels: cell type-specific gene expression of cluster designation antigens in the prostate. BMC Genomics. 2008;9:246.PubMedCrossRefGoogle Scholar
  2. 2.
    Baker MA, Hetherington L, Reeves G, Muller J, Aitken RJ. The rat sperm proteome characterized via IPG strip prefractionation and LC-MS/MS identification. Proteomics. 2008;8:2312–21.PubMedCrossRefGoogle Scholar
  3. 3.
    Baker MA, Witherdin R, Hetherington L, Cunningham-Smith K, Aitken RJ. Identification of Post-translational modifications that occur during sperm maturation using Difference in 2D-Gel electrophoresis. Proteomics. 2005;5:1003–12.PubMedCrossRefGoogle Scholar
  4. 4.
    Bitton DA, Smith DL, Connolly Y, Scutt PJ, Miller CJ. An integrated mass-spectrometry pipeline identifies novel protein coding-regions in the human genome. PLoS One. 2010;5:e8949.PubMedCrossRefGoogle Scholar
  5. 5.
    Stapels MD, Barofsky DF. Complementary use of MALDI and ESI for the HPLC-MS/MS analysis of DNA-binding proteins. Anal Chem. 2004;76:5423–30.PubMedCrossRefGoogle Scholar
  6. 6.
    Stapels MD, Cho JC, Giovannoni SJ, Barofsky DF. Proteomic analysis of novel marine bacteria using MALDI and ESI mass spectrometry. J Biomol Tech. 2004;15:191–8.PubMedGoogle Scholar
  7. 7.
    Julka S, Regnier F. Quantification in proteomics through stable isotope coding: a review. J Proteome Res. 2004;3:350–63.PubMedCrossRefGoogle Scholar
  8. 8.
    Chulavatnatol M, Panyim S, Wititsuwannakul D. Comparison of phosphorylated proteins in intact rat spermatozoa from caput and cauda epididymidis. Biol Reprod. 1982;26:197–207.PubMedCrossRefGoogle Scholar
  9. 9.
    Tash JS, Kakar SS, Means AR. Flagellar motility requires the cAMP-dependent phosphorylation of a heat-stable NP-40-soluble 56 kd protein, axokinin. Cell. 1984;38:551–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Yano-Toyoshima Y. Two heavy chains of 21S dynein from sea urchin sperm flagella. J Biochem. 1985;98:767–79.PubMedGoogle Scholar
  11. 11.
    Maekawa M, O’Brien DA, Allen RL, Eddy EM. Heat-shock cognate protein (hsc71) and related proteins in mouse spermatogenic cells. Biol Reprod. 1989;40:843–52.PubMedCrossRefGoogle Scholar
  12. 12.
    Verdier Y, Chaffaux S, Boue F. Identification of post-vasectomy sperm auto-antigens in fox (Vulpes vulpes) by two-dimensional gel electrophoresis and Western blotting. J Reprod Immunol. 2002;54:65–80.PubMedCrossRefGoogle Scholar
  13. 13.
    Martinez-Heredia J, Estanyol JM, Ballesca JL, Oliva R. Proteomic identification of human sperm proteins. Proteomics. 2006;6:4356–69.PubMedCrossRefGoogle Scholar
  14. 14.
    Oliva R, de Mateo S, Estanyol JM. Sperm cell proteomics. Proteomics. 2009;9:1004–17.PubMedCrossRefGoogle Scholar
  15. 15.
    Cao W, Gerton GL, Moss SB. Proteomic profiling of accessory structures from the mouse sperm flagellum. Mol Cell Proteomics. 2006;5:801–10.PubMedCrossRefGoogle Scholar
  16. 16.
    Miki K, Qu W, Goulding EH, Willis WD, Bunch DO, Strader LF, et al. Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. Proc Natl Acad Sci USA. 2004;101:16501–6.PubMedCrossRefGoogle Scholar
  17. 17.
    de Mateo S, Castillo J, Estanyol JM, Ballesca JL, Oliva R. Proteomic characterization of the human sperm nucleus. Proteomics. 2011;11:2714–26.PubMedCrossRefGoogle Scholar
  18. 18.
    Baker MA, Hetherington L, Reeves GM, Aitken RJ. The mouse sperm proteome characterized via IPG strip prefractionation and LC-MS/MS identification. Proteomics. 2008;8:1720–30.PubMedCrossRefGoogle Scholar
  19. 19.
    Baker MA, Reeves G, Hetherington L, Muller J, Baur I, Aitken RJ. Identification of gene products present in Triton X-100 soluble and insoluble fractions of human spermatozoa lysates using LC-MS/MS analysis. Proteomics Clin Appl. 2007;1:524–32.PubMedCrossRefGoogle Scholar
  20. 20.
    Baker MA. The ‘omics revolution and our understanding of sperm cell biology. Asian J Androl. 2011;13:6–10.PubMedCrossRefGoogle Scholar
  21. 21.
    Voglmayr JK, White IG. Effects of rete testis and epididymal fluid on the metabolism and motility of testicular and post-testicular spermatozoa of the ram. Biol Reprod. 1979;20:288–93.PubMedCrossRefGoogle Scholar
  22. 22.
    Evans RW, Setchell BP. The effect of rete testis fluid on the metabolism of testicular spermatozoa. J Reprod Fertil. 1978;52:15–20.PubMedCrossRefGoogle Scholar
  23. 23.
    Voglmayr JK, Murdoch RN, White IG. Metabolism of ram testicular spermatozoa in the presence of testosterone and related steroids. Acta Endocrinol (Copenh). 1970;65:565–76.Google Scholar
  24. 24.
    O’Shea T, Voglmayr JK. Metabolism of glucose, lactate, and acetate by testicular and ejaculated spermatozoa of the ram. Biol Reprod. 1970;2:326–32.PubMedCrossRefGoogle Scholar
  25. 25.
    Voglmayr JK, Scott TW, Setchell BP, Waites GM. Metabolism of testicular spermatozoa and characteristics of testicular fluid collected from conscious rams. J Reprod Fertil. 1967;14:87–99.PubMedCrossRefGoogle Scholar
  26. 26.
    Ijiri TW, Merdiushev T, Cao W, Gerton GL. Identification and validation of mouse sperm proteins correlated with epididymal maturation. Proteomics. 2011;11:4047–62.PubMedCrossRefGoogle Scholar
  27. 27.
    Yuan H, Liu A, Zhang L, Zhou H, Wang Y, Zhang H, et al. Proteomic profiling of regionalized proteins in rat epididymis indicates consistency between specialized distribution and protein functions. J Proteome Res. 2006;5:299–307.PubMedCrossRefGoogle Scholar
  28. 28.
    Cao W, Aghajanian HK, Haig-Ladewig LA, Gerton GL. Sorbitol can fuel mouse sperm motility and protein tyrosine phosphorylation via sorbitol dehydrogenase. Biol Reprod. 2009;80:124–33.PubMedCrossRefGoogle Scholar
  29. 29.
    de Mateo S, Martinez-Heredia J, Estanyol JM, Dominguez-Fandos D, Vidal-Taboada JM, Ballesca JL, et al. Marked correlations in protein expression identified by proteomic analysis of human spermatozoa. Proteomics. 2007;7:4264–77.PubMedCrossRefGoogle Scholar
  30. 30.
    Rosales JL, Lee BC, Modarressi M, Sarker KP, Lee KY, Jeong YG, et al. Outer dense fibers serve as a functional target for Cdk5.p35 in the developing sperm tail. J Biol Chem. 2004;279:1224–32.PubMedCrossRefGoogle Scholar
  31. 31.
    Baker MA, Aitken RJ. Proteomic insights into spermatozoa: critiques, comments and concerns. Expert Rev Proteomics. 2009;6:691–705.PubMedCrossRefGoogle Scholar
  32. 32.
    Thacker S, Yadav SP, Sharma RK, Kashou A, Willard B, Zhang D, et al. Evaluation of sperm proteins in infertile men: a proteomic approach. Fertil Steril. 2011;95:2745–8.PubMedCrossRefGoogle Scholar
  33. 33.
    van Gestel RA, Brewis IA, Ashton PR, Brouwers JF, Gadella BM. Multiple proteins present in purified porcine sperm apical plasma membranes interact with the zona pellucida of the oocyte. Mol Hum Reprod. 2007;13:445–54.PubMedCrossRefGoogle Scholar
  34. 34.
    Thepparat T, Katawatin S, Vongpralub T, Duangjinda M, Thammasirirak S, Utha A. Separation of bovine spermatozoa proteins using 2D-PAGE revealed the relationship between tektin-4 expression patterns and spermatozoa motility. Theriogenology. 2012;77(9):1816–21.PubMedCrossRefGoogle Scholar
  35. 35.
    Oliva R. Protamines and male infertility. Hum Reprod Update. 2006;12:417–35.PubMedCrossRefGoogle Scholar
  36. 36.
    Baker MA, Reeves G, Hetherington L, Aitken RJ. The mouse sperm proteome characterised via IPG strip prefractionation and LC-MS/MS identification. Proteomics. 2008;8:1720–30.PubMedCrossRefGoogle Scholar
  37. 37.
    Peddinti D, Nanduri B, Kaya A, Feugang JM, Burgess SC, Memili E. Comprehensive proteomic analysis of bovine spermatozoa of varying fertility rates and identification of biomarkers associated with fertility. BMC Syst Biol. 2008;2:19.PubMedCrossRefGoogle Scholar
  38. 38.
    Dorus S, Busby SA, Gerike U, Shabanowitz J, Hunt DF, Karr TL. Genomic and functional evolution of the Drosophila melanogaster sperm proteome. Nat Genet. 2006;38:1440–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Skalhegg BS, Huang Y, Su T, Idzerda RL, McKnight GS, Burton KA. Mutation of the Calpha subunit of PKA leads to growth retardation and sperm ­dysfunction. Mol Endocrinol. 2002;16:630–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Schmitt JM, Stork PJ. PKA phosphorylation of Src mediates cAMP’s inhibition of cell growth via Rap1. Mol Cell. 2002;9:85–94.PubMedCrossRefGoogle Scholar
  41. 41.
    Amieux PS, McKnight GS. The essential role of RI alpha in the maintenance of regulated PKA activity. Ann N Y Acad Sci. 2002;968:75–95.PubMedCrossRefGoogle Scholar
  42. 42.
    Baker MA, Aitken RJ. Identification of pp 60c-src as a key PKA-stimulated tyrosine kinase involved in the capacitation and hyperactivation of murine spermatozoa. J Cell Sci. 2006;119:3182–92.PubMedCrossRefGoogle Scholar
  43. 43.
    Harrison RA. Rapid PKA-catalysed phosphorylation of boar sperm proteins induced by the capacitating agent bicarbonate. Mol Reprod Dev. 2004;67:337–52.PubMedCrossRefGoogle Scholar
  44. 44.
    Carr DW, Fujita A, Stentz CL, Liberty GA, Olson GE, Narumiya S. Identification of sperm-specific proteins that interact with A-kinase anchoring proteins in a manner similar to the type II regulatory subunit of PKA. J Biol Chem. 2001;276:17332–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Baker MA, Hetherington L, Curry B, Aitken RJ. Phosphorylation and consequent stimulation of the tyrosine kinase c-Abl by PKA in mouse spermatozoa; its implications during capacitation. Dev Biol. 2009;333:57–66.PubMedCrossRefGoogle Scholar
  46. 46.
    Burton KA, Treash-Osio B, Muller CH, Dunphy EL, McKnight GS. Deletion of type IIalpha regulatory subunit delocalizes protein kinase A in mouse sperm without affecting motility or fertilization. J Biol Chem. 1999;274:24131–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Burton KA, McKnight GS. PKA, germ cells, and fertility. Physiology (Bethesda). 2007;22:40–6.CrossRefGoogle Scholar
  48. 48.
    Burton KA, McDermott DA, Wilkes D, Poulsen MN, Nolan MA, Goldstein M, et al. Haploinsufficiency at the protein kinase A RI alpha gene locus leads to fertility defects in male mice and men. Mol Endocrinol. 2006;20:2504–13.PubMedCrossRefGoogle Scholar
  49. 49.
    Nolan MA, Babcock DF, Wennemuth G, Brown W, Burton KA, McKnight GS. Sperm-specific protein kinase A catalytic subunit C{alpha}2 orchestrates cAMP signaling for male fertility. Proc Natl Acad Sci USA. 2004;101:13483–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Baker MA, Hetherington L, Reeves G, Müller J, Aitken RJ. The rat sperm proteome characterised via IPG strip pre-fractionation and LC-MS/MS identification. Proteomics. 2008;8:2312–21.PubMedCrossRefGoogle Scholar
  51. 51.
    Baker MA, Smith ND, Hetherington L, Pelzing M, Condina MR, Aitken RJ. Use of titanium dioxide to find phosphopeptide and total protein changes during epididymal sperm maturation. J Proteome Res. 2010;10:1004–7.CrossRefGoogle Scholar
  52. 52.
    Qian ZU, Tsai YH, Steinberger A, Lu M, Greenfield AR, Haddox MK. Localization of ornithine decarboxylase in rat testicular cells and epididymal spermatozoa. Biol Reprod. 1985;33:1189–95.PubMedCrossRefGoogle Scholar
  53. 53.
    Lopez-Contreras AJ, Lopez-Garcia C, Jimenez-Cervantes C, Cremades A, Penafiel R. Mouse ornithine decarboxylase-like gene encodes an antizyme inhibitor devoid of ornithine and arginine decarboxylating activity. J Biol Chem. 2006;281:30896–906.PubMedCrossRefGoogle Scholar
  54. 54.
    Tosaka Y, Tanaka H, Yano Y, Masai K, Nozaki M, Yomogida K, et al. Identification and characterization of testis specific ornithine decarboxylase antizyme (OAZ-t) gene: expression in haploid germ cells and polyamine-induced frameshifting. Genes Cells. 2000;5:265–76.PubMedCrossRefGoogle Scholar
  55. 55.
    Esposito G, Jaiswal BS, Xie F, Krajnc-Franken MA, Robben TJ, Strik AM, et al. Mice deficient for soluble adenylyl cyclase are infertile because of a severe sperm-motility defect. Proc Natl Acad Sci USA. 2004;101:2993–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Xie F, Garcia MA, Carlson AE, Schuh SM, Babcock DF, Jaiswal BS, et al. Soluble adenylyl cyclase (sAC) is indispensable for sperm function and fertilization. Dev Biol. 2006;296:353–62.PubMedCrossRefGoogle Scholar
  57. 57.
    Visconti PE, Bailey JL, Moore GD, Pan D, Olds-Clarke P, Kopf GS. Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development. 1995;121:1129–37.PubMedGoogle Scholar
  58. 58.
    Arcelay E, Salicioni AM, Wertheimer E, Visconti PE. Identification of proteins undergoing tyrosine phosphorylation during mouse sperm capacitation. Int J Dev Biol. 2008;52:463–72.PubMedCrossRefGoogle Scholar
  59. 59.
    Baker MA, Hetherington L, Aitken RJ. Identification of pp 60c-src as a key PKA-stimulated tyrosine kinase involved in the capacitation and hyper­activation of murine spermatozoa. J Cell Sci. 2006;119:3182–92.PubMedCrossRefGoogle Scholar
  60. 60.
    Ficarro S, Chertihin O, Westbrook VA, White F, Jayes F, Kalab P, et al. Phosphoproteome analysis of capacitated human sperm. Evidence of tyrosine phosphorylation of a kinase-anchoring protein 3 and valosin-containing protein/p97 during capacitation. J Biol Chem. 2003;278:11579–89.PubMedCrossRefGoogle Scholar
  61. 61.
    Ecroyd H, Jones RC, Aitken RJ. Tyrosine phosphorylation of HSP-90 during mammalian sperm capacitation. Biol Reprod. 2003;69:1801–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Asquith KL, Baleato RM, McLaughlin EA, Nixon B, Aitken RJ. Tyrosine phosphorylation activates surface chaperones facilitating sperm-zona recognition. J Cell Sci. 2004;117:3645–57.PubMedCrossRefGoogle Scholar
  63. 63.
    Dube C, Leclerc P, Baba T, Reyes-Moreno C, Bailey JL. The proacrosin binding protein, sp32, is tyrosine phosphorylated during capacitation of pig sperm. J Androl. 2005;26:519–28.PubMedCrossRefGoogle Scholar
  64. 64.
    Platt MD, Salicioni AM, Hunt DF, Visconti PE. Use of differential isotopic labeling and mass spectrometry to analyze capacitation-associated changes in the phosphorylation status of mouse sperm proteins. J Proteome Res. 2009;8:1431–40.PubMedCrossRefGoogle Scholar
  65. 65.
    Kota V, Dhople VM, Shivaji S. Tyrosine phosphoproteome of hamster spermatozoa: role of glycerol-3-phosphate dehydrogenase 2 in sperm capacitation. Proteomics. 2009;9:1809–26.PubMedCrossRefGoogle Scholar
  66. 66.
    Baker MA, Lewis B, Hetherington L, Aitken RJ. Development of the signalling pathways associated with sperm capacitation during epididymal maturation. Mol Reprod Dev. 2003;64:446–57.PubMedCrossRefGoogle Scholar
  67. 67.
    Yanagimachi R. Mammalina fertilization. In: Knobil E, Neil JD, editors. The physiology of reproduction. 2nd ed. New York: Raven Press, Ltd.; 1994. p. 189–317.Google Scholar
  68. 68.
    Baker MA, Smith ND, Hetherington L, Taubman K, Graham ME, Robinson PJ, et al. Label-free quantitation of phosphopeptide changes during rat sperm capacitation. J Proteome Res. 2010;9:718–29.PubMedCrossRefGoogle Scholar
  69. 69.
    Inoue N, Ikawa M, Isotani A, Okabe M. The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature. 2005;434:234–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Sosnik J, Miranda PV, Spiridonov NA, Yoon SY, Fissore RA, Johnson GR, et al. Tssk6 is required for Izumo relocalization and gamete fusion in the mouse. J Cell Sci. 2009;122:2741–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Baker MA, Reeves G, Hetherington L, Aitken RJ. Analysis of proteomic changes associated with sperm capacitation through the combined use of IPG-strip pre-fractionation followed by RP chromatography LC-MS/MS analysis. Proteomics. 2009;10:482–95.CrossRefGoogle Scholar
  72. 72.
    Dun MD, Smith ND, Baker MA, Lin M, Aitken RJ, Nixon B. The chaperonin containing TCP1 complex (CCT/TRiC) is involved in mediating sperm-oocyte interaction. J Biol Chem. 2011;286:36875–87.PubMedCrossRefGoogle Scholar
  73. 73.
    Krapf D, Arcelay E, Wertheimer EV, Sanjay A, Pilder SH, Salicioni AM, et al. Inhibition of Ser/Thr phosphatases induces capacitation-associated signaling in the presence of Src kinase inhibitors. J Biol Chem. 2010;285:7977–85.PubMedCrossRefGoogle Scholar
  74. 74.
    Visconti PE, Florman HM. Mechanisms of sperm-egg interactions: between sugars and broken bonds. Sci Signal. 2010;3:pe35.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Discipline of Biological Sciences, Faculty of Science and ITUniversity of NewcastleCallaghanAustralia

Personalised recommendations