Skip to main content

Transcriptomics Technology: Promise and Potential Pitfalls

  • Chapter
  • First Online:
Human Gametes and Preimplantation Embryos
  • 1352 Accesses

Abstract

The developmental program of an embryo rests on the outcome of the complex interactions of gene products of the embryonic cell. As information flows from DNA to RNA and to protein, each step is potentially a predictor of the physiologic state of the cell. While protein content is more closely related to cellular phenotype than RNA content, current technology is much more sensitive for characterization of all RNA molecules of the cell (the transcriptome) than protein content. Taking RNA expression levels as a proxy for the expression levels of corresponding proteins, one can approximate the molecular composition of the cell and attempt to correlate it with its physiologic state. In the context of assisted reproductive technologies, transcriptome analysis is a powerful tool that can be used to identify genes whose expressions are predictive of implantation and developmental success. At a more practical level, RNA expression profiles of blastocyst biopsies might be used for pre-implantation embryo screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gilbert I, Scantland S, Dufort I, et al. Real-time monitoring of aRNA production during T7 amplification to prevent the loss of sample representation during microarray hybridization sample preparation. Nucleic Acids Res. 2009;37(8):e65.

    Article  PubMed  Google Scholar 

  2. Kurimoto K, Yabuta Y, Ohinata Y, Saitou M. Global single-cell cDNA amplification to provide a template for representative high-density oligonucleotide microarray analysis. Nat Protoc. 2007;2(3):739–52.

    Article  PubMed  CAS  Google Scholar 

  3. Tang F, Lao K, Surani MA. Development and applications of single-cell transcriptome analysis. Nat Methods. 2011;8(4 Suppl):S6–11.

    PubMed  CAS  Google Scholar 

  4. External RNA Controls Consortium. Proposed methods for testing and selecting the ERCC external RNA controls. BMC Genomics. 2005;6:150.

    Article  Google Scholar 

  5. Shi L, Reid LH, Jones WD, et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol. 2006;24(9):1151–61.

    Article  PubMed  CAS  Google Scholar 

  6. Irizarry RA, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4(2):249–64.

    Article  PubMed  Google Scholar 

  7. Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high ­density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19(2):185–93.

    Article  PubMed  CAS  Google Scholar 

  8. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 2003; 31(4):e15.

    Article  PubMed  Google Scholar 

  9. Benjamini Y, Hochberg Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc B Met. 1995;57(1):289–300.

    Google Scholar 

  10. Glenn TC. Field guide to next-generation DNA sequencers. Mol Ecol Resour. 2011;11(5):759–69.

    Article  PubMed  CAS  Google Scholar 

  11. Trapnell C, Roberts A, Goff L, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7(3):562–78.

    Article  PubMed  CAS  Google Scholar 

  12. Katz Y, Wang ET, Airoldi EM, Burge CB. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat Methods. 2010;7(12):1009–15.

    Article  PubMed  CAS  Google Scholar 

  13. He Y, Vogelstein B, Velculescu VE, Papadopoulos N, Kinzler KW. The antisense transcriptomes of human cells. Science. 2008;322(5909):1855–7.

    Article  PubMed  CAS  Google Scholar 

  14. Core LJ, Waterfall JJ, Lis JT. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science. 2008;322(5909):1845–8.

    Article  PubMed  CAS  Google Scholar 

  15. Parkhomchuk D, Borodina T, Amstislavskiy V, et al. Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res. 2009;37(18):e123.

    Article  PubMed  Google Scholar 

  16. Ansorge WJ. Next-generation DNA sequencing techniques. N Biotechnol. 2009;25(4):195–203.

    Article  PubMed  CAS  Google Scholar 

  17. Pop M, Salzberg SL. Bioinformatics challenges of new sequencing technology. Trends Genet. 2008;24(3):142–9.

    Article  PubMed  CAS  Google Scholar 

  18. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63.

    Article  PubMed  CAS  Google Scholar 

  19. Sendler E, Johnson GD, Krawetz SA. Local and global factors affecting RNA sequencing analysis. Anal Biochem. 2011;419(2):317–22.

    Article  PubMed  CAS  Google Scholar 

  20. Dohm JC, Lottaz C, Borodina T, Himmelbauer H. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res. 2008;36(16):e105.

    Article  PubMed  Google Scholar 

  21. Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L. Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol. 2011;12(3):R22.

    Article  PubMed  CAS  Google Scholar 

  22. Vijaya Satya R, Zavaljevski N, Reifman J. A new strategy to reduce allelic bias in RNA-Seq readmapping. Nucleic Acids Res. 2012;40(16):e127.

    Article  CAS  Google Scholar 

  23. McIntyre LM, Lopiano KK, Morse AM, et al. RNA-seq: technical variability and sampling. BMC Genomics. 2011;12:293.

    Article  PubMed  CAS  Google Scholar 

  24. Auer PL, Doerge RW. Statistical design and analysis of RNA sequencing data. Genetics. 2010;185(2):405–16.

    Article  PubMed  CAS  Google Scholar 

  25. Bullard JH, Purdom E, Hansen KD, Dudoit S. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics. 2010;11:94.

    Article  PubMed  Google Scholar 

  26. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11(3):R25.

    Article  PubMed  Google Scholar 

  27. Kvam VM, Liu P, Si Y. A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data. Am J Bot. 2012;99(2):248–56.

    Article  PubMed  Google Scholar 

  28. Tarazona S, Garcia-Alcalde F, Dopazo J, Ferrer A, Conesa A. Differential expression in RNA-seq: a matter of depth. Genome Res. 2011;21(12):2213–23.

    Article  PubMed  CAS  Google Scholar 

  29. Meyer SU, Pfaffl MW, Ulbrich SE. Normalization strategies for microRNA profiling experiments: a ‘normal’ way to a hidden layer of complexity? Biotechnol Lett. 2010;32(12):1777–88.

    Article  PubMed  CAS  Google Scholar 

  30. Garmire LX, Subramaniam S. Evaluation of normalization methods in mammalian microRNA-Seq data. RNA. 2012;18(6):1279–88.

    Article  PubMed  CAS  Google Scholar 

  31. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 2008;18(9):1509–17.

    Article  PubMed  CAS  Google Scholar 

  32. Cloonan N, Forrest AR, Kolle G, et al. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods. 2008;5(7):613–9.

    Article  PubMed  CAS  Google Scholar 

  33. Ekblom R, Slate J, Horsburgh GJ, Birkhead T, Burke T. Comparison between normalised and unnormalised 454-sequencing libraries for small-scale RNA-Seq studies. Comp Funct Genomics. 2012;2012:281693.

    Article  PubMed  Google Scholar 

  34. Hebenstreit D, Fang M, Gu M, Charoensawan V, van Oudenaarden A, Teichmann SA. RNA sequencing reveals two major classes of gene expression levels in metazoan cells. Mol Syst Biol. 2011;7:497.

    Article  PubMed  Google Scholar 

  35. Parks JC, McCallie BR, Janesch AM, Schoolcraft WB, Katz-Jaffe MG. Blastocyst gene expression correlates with implantation potential. Fertil Steril. 2011;95(4):1367–72.

    Article  PubMed  CAS  Google Scholar 

  36. Cillo F, Brevini TA, Antonini S, Paffoni A, Ragni G, Gandolfi F. Association between human oocyte developmental competence and expression levels of some cumulus genes. Reproduction. 2007;134(5):645–50.

    Article  PubMed  CAS  Google Scholar 

  37. Assou S, Haouzi D, Mahmoud K, et al. A non-invasive test for assessing embryo potential by gene expression profiles of human cumulus cells: a proof of concept study. Mol Hum Reprod. 2008;14(12):711–9.

    Article  PubMed  CAS  Google Scholar 

  38. Assidi M, Montag M, Van der Ven K, Sirard MA. Biomarkers of human oocyte developmental competence expressed in cumulus cells before ICSI: a preliminary study. J Assist Reprod Genet. 2011;28(2):173–88.

    Article  PubMed  Google Scholar 

  39. Hamel M, Dufort I, Robert C, Leveille MC, Leader A, Sirard MA. Identification of follicular marker genes as pregnancy predictors for human IVF: new evidence for the involvement of luteinization process. Mol Hum Reprod. 2010;16(8):548–56.

    Article  PubMed  CAS  Google Scholar 

  40. Gilbert I, Robert C, Vigneault C, Blondin P, Sirard MA. Impact of the LH surge on granulosa cell ­trancript levels as markers of oocyte developmental competence in cattle. Reproduction. 2012;143(6): 735–47.

    Article  PubMed  CAS  Google Scholar 

  41. Driver AM, Penagaricano F, Huang W, et al. RNA-Seq analysis uncovers transcriptomic variations between morphologically similar in vivo- and in vitro-derived bovine blastocysts. BMC Genomics. 2012;13(1):118.

    Article  PubMed  CAS  Google Scholar 

  42. Ross PJ, Chitwood JL. Transcriptome analysis of single bovine embryos by Rna-Seq. Reprod Fertil Dev. 2012;24(1):182.

    Article  Google Scholar 

  43. Tang F, Barbacioru C, Bao S, et al. Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis. Cell Stem Cell. 2010;6(5):468–78.

    Article  PubMed  CAS  Google Scholar 

  44. Efron B. Local false discovery rates. Stanford, CA: Department of Statistics, Stanford University; 2005.

    Google Scholar 

Download references

Acknowledgments

This work was supported in part with federal funds from NIH grants DA018343, DK090744 and UL1 RR024139.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can Bruce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bruce, C., Uyar, A. (2013). Transcriptomics Technology: Promise and Potential Pitfalls. In: Gardner, D., Sakkas, D., Seli, E., Wells, D. (eds) Human Gametes and Preimplantation Embryos. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6651-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6651-2_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6650-5

  • Online ISBN: 978-1-4614-6651-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics