Skip to main content

Some Extensions of the Lucas Functions

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 43))

Abstract

From 1876 to 1880 Lucas developed his theory of the functions v n and u n which now bear his name. Today these functions find use in primality testing and integer factorization, among other computational techniques. The functions v n and u n can be expressed in terms of the nth powers of the zeroes of a quadratic polynomial, and throughout his writings Lucas speculated about the possible extension of these functions to those which could be expressed in terms of the nth powers of the zeroes of a cubic polynomial or of a quartic polynomial. Indeed, at the end of his life he stated that by searching for the addition formulas of the numerical functions which originate from recurrence sequences of the third or fourth degree and by studying in a general way the laws of the residues of these functions for prime moduli, we would arrive at important new properties of prime numbers. We only have scattered hints concerning what functions Lucas had in mind because he provided so little information about them in his published and unpublished work. In this paper we discuss two pairs of functions that are easily expressed as certain combinations of the n th powers of the zeroes of a quartic polynomial and of a sextic polynomial, respectively. We also present several new results, which illustrate the striking similarity between these functions and those of Lucas. The methods that we use to obtain these results are for the most part elementary and would likely have been known to Lucas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    It seems that G is always 1, but we have not been able to prove this in general.

References

  1. J.P. Bézivin, A. Pethö, A.J. van der Poorten, A full characterization of divisibility sequences. Am. J. Math. 112, 985–1001 (1990)

    Article  MATH  Google Scholar 

  2. E.T. Bell, Analogies between the u n , v n of Lucas and elliptic functions. Bull. Am. Math. Soc. 29, 401–406 (1923)

    Article  MATH  Google Scholar 

  3. M. Hall, Slowly increasing arithmetic series. J. Lond. Math. Soc. 8, 162–166 (1933)

    Article  Google Scholar 

  4. M. Hall, Divisibility sequences of the third order. Am. J. Math. 58, 577–584 (1936)

    Article  Google Scholar 

  5. D.H. Lehmer, Tests for primality by the converse of Fermat’s theorem. Bull. Am. Math. Soc. 33, 327–340 (1927)

    Article  MathSciNet  MATH  Google Scholar 

  6. É. Lucas, Note sur l’application des séries récurrentes à la recherche de la loi de distribution des nombres premiers. Comp. Rend. Acad. Sci. Paris 82, 165–167 (1876)

    MATH  Google Scholar 

  7. É. Lucas, Recherches sur plusiers ouvrages de Leonard de Pise et sur diverse questions d’arithmétique supérieure. Boll. Bibliogr. Storia Sci. Matemat. Fisiche 10, 129–193, 239–293 (1877)

    Google Scholar 

  8. É. Lucas, Sur la théorie des fonctions numériques simplement périodiques. Nouv. Corresp. Math. 3 369–376, 401–407 (1877); 4, 1–8, 33–40, 65–71, 97–102, 129–134, 225–228 (1878)

    Google Scholar 

  9. É. Lucas, Théorie des fonctions numériques simplement périodiques. Am. J. Math. 1, 184–240, 289–321 (1878)

    Article  Google Scholar 

  10. É. Lucas, Notice sur les Titres et Travaux Scientifiques de M. Édouard Lucas (D. Jouaust, Paris, 1880)

    Google Scholar 

  11. É. Lucas, Théorie des Nombres (Gauthier-Villars, Paris, 1891)

    MATH  Google Scholar 

  12. É. Lucas, Questions proposées à la discussion des 1re et 2e sections, 1o Questions d’arithmétique supérieure. Assoc. Française l’Avancement Sci. Comp. Rend. Sessions 20, 149–151 (1891)

    Google Scholar 

  13. S. Müller, E. Roettger & H.C. Williams, A cubic extension of the Lucas functions. Ann. Sci. Math. Québec 33, 185–224 (2009)

    MATH  Google Scholar 

  14. A.D. Oosterhout, Characterization of divisibility sequences. Master’s Thesis, Utrecht University, June 2011

    Google Scholar 

  15. T.A. Pierce, The numerical factors of the arithmetic forms \(\prod _{i=1}^{n}(1 \pm \alpha _{i}^{m})\). Ann. Math. (2nd Ser.) 18, 53–64 (1916)

    Google Scholar 

  16. A. Pethö, Complete solutions to a family of quartic diophantine equations. Math. Comp. 57, 777–798 (1991)

    MathSciNet  MATH  Google Scholar 

  17. A. Pethö, Egy negyedrendü rekurzív sorozatcsaládról. Acta Acad. Paed. Agriensis Sect. Math. 30, 115–122 (2003). MR2054721 (2005g:11018)

    Google Scholar 

  18. E. Roettger, A cubic extension of the Lucas functions. PhD Thesis, Univ. of Calgary, 2009. http://math.ucalgary.ca/~hwilliam/files/A Cubic Extensionof the Lucas Functions.pdf

  19. N. Sloane, Online encyclopedia of integer sequences. http://oeis.org/wiki/

  20. M. Ward, The law of apparition of primes in a Lucasian sequence. Trans. Am. Math. Soc. 44, 68–86 (1938)

    Article  Google Scholar 

  21. M. Ward, The laws of apparition and repetition of primes in a cubic recurrence. Trans. Am. Math. Soc. 79, 72–90 (1955)

    Article  MATH  Google Scholar 

  22. H.C. Williams, Édouard Lucas and Primality Testing. Canadian Mathematical Society Series of Monographs and Advanced Texts, vol 22 (Wiley, New York, 1998)

    Google Scholar 

  23. H.C. Williams, R.K. Guy, Some fourth order linear divisibility sequences. Int. J. Number Theory 7(5), 1255–1277 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

H.C. Williams: Research supported in part by NSERC of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Roettger .

Editor information

Editors and Affiliations

Additional information

Dedicated to the memory of Alfred J. van der Poorten (1942–2010)

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Roettger, E.L., Williams, H.C., Guy, R.K. (2013). Some Extensions of the Lucas Functions. In: Borwein, J., Shparlinski, I., Zudilin, W. (eds) Number Theory and Related Fields. Springer Proceedings in Mathematics & Statistics, vol 43. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6642-0_15

Download citation

Publish with us

Policies and ethics