Skip to main content

Quasi-static Pressures in the Middle Ear Cleft

  • Chapter
  • First Online:

Part of the book series: Springer Handbook of Auditory Research ((SHAR))

Abstract

The primary function of the middle ear (ME) is to allow efficient transfer of sound waves from the air-filled external ear canal to the inner ear cochlear fluid. The major part of modern ME research has been aimed at investigating the acoustic function. The ME is also a semirigid biological gas pocket that is closed most of the time, and therefore is subject to slower quasi-static variations between the pressure in the external ear canal and the ME cavity. These quasi-static pressure changes can be several orders of magnitude larger than the loudest tolerable dynamic sound pressures. Many agree that there is a close relationship between ME pressure (de)regulation and pathology of the tympanic membrane (TM) as well as the ME, but with respect to the underlying mechanisms many questions still remain. This chapter deals with several aspects of quasi-static pressures in the ME. The chapter explains how ME pressure can be measured, discusses the different parts involved in regulating ME pressure, and comments on the connections between ME pressure deregulation and ME pathology. Some recent results are discussed that explore the role of neural mechanisms in regulating quasi-static pressures in the ME.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alper, C. M., Kitsko, D. J., Swarts, J. D., Martin, B., Yuksel, S., Cullen Doyle, B. M., Villardo, R. J., & Doyle, W. J. (2011). Role of the mastoid in middle ear pressure regulation. The Laryngoscope, 121, 404–408.

    PubMed Central  PubMed  Google Scholar 

  • Aoki, K., Mitani, Y., Tuji, T., Hamada, Y., Utahashi, H., & Moriyama, H. (1998). Relationship between middle ear pressure, mucosal lesion and mastoid pneumatization. The Laryngoscope, 108, 1840–1845.

    CAS  PubMed  Google Scholar 

  • Ars, B., Decraemer, W., & Ars-Piret, N. (1989). The lamina propria and cholesteatoma. Clinical Otolaryngology & Allied Sciences, 14, 471–475.

    CAS  Google Scholar 

  • Ars, B., Wuyts, F., Van de Heyning, P., Miled, I., Bogers, J., & Van Marck, E. (1997). Histomorphometric study of the normal middle ear mucosa. Preliminary results supporting the gas-exchange function in the postero-superior part of the middle ear cleft. Acta Oto-Laryngologica, 117, 704–707.

    CAS  PubMed  Google Scholar 

  • Bluestone, C. D., & Doyle, W. J. (1988). Anatomy and physiology of Eustachian tube and middle ear related to otitis media. The Journal of Allergy and Clinical Immunology, 81, 997–1003.

    CAS  PubMed  Google Scholar 

  • Bonding, P., & Tos, M. (1981). Middle ear pressure during brief pathological conditions of the nose and throat. Acta Oto-Laryngologica, 92, 63–69.

    CAS  PubMed  Google Scholar 

  • Buckingham, R. A., & Ferrer, J. L. (1973). Middle ear pressures in Eustachian tube malfunction: Manometric studies. The Laryngoscope, 83, 1585–1593.

    CAS  PubMed  Google Scholar 

  • Bylander, A. (1986). Pathophysiological aspects on Eustachian tube function and SOM. Scandinavian Audiology, Supplementum, 26, 59–63.

    CAS  Google Scholar 

  • Bylander, A., Ivarsson, A., & Tjernström, Ö. (1981). Eustachian tube function in normal children and adults. Acta Oto-Laryngologica, 92, 481–491.

    CAS  PubMed  Google Scholar 

  • Bylander, A. K., Ivarsson, A., Tjernström, Ö., & Andréasson, L. (1985). Middle ear pressure variations during 24 hours in children. Annals of Otology, Rhinology & Laryngology Supplement, 120, 33–35.

    Google Scholar 

  • Ceylan, A., Göksu, N., Kemaloğlu, Y. K., Uğur, B., Akyürek, N., & Bayazit, Y. A. (2007). Impact of Jacobson’s (tympanic) nerve sectioning on middle ear functions. Otology & Neurotology, 28, 341–344.

    Google Scholar 

  • Cinamon, U. (2009). The growth rate and size of the mastoid air cell system and mastoid bone: A review and reference. European Archives of Oto-Rhino-Laryngology, 266, 781–786.

    PubMed  Google Scholar 

  • Cinamon, U., & Sadé, J. (2003). Mastoid and tympanic membrane as pressure buffers: A quantitative study in a middle ear cleft model. Otology & Neurotology, 24, 839–842.

    Google Scholar 

  • Csakanyi, Z., Katona, G. Josvai, E., Mohos, F, & Sziklai, I. (2010). Volume and surface of the mastoid cell system in otitis media with effusion in children: A case-control study by three-dimensional reconstruction of computed tomographic images. Otology & Neurotology, 32, 64–70.

    Google Scholar 

  • Darvishi, S., & Al-Ani, A. (2007). Brain-computer interface analysis using continuous wavelet transform and adaptive neuro-fuzzy classifier. Conference Proceedings—IEEE Engineering in Medicine and Biology Society, 1, 3220–3223.

    Google Scholar 

  • Decraemer W. F., & Dirckx, J. J. J. (1998). Pressure regulation due to the tympanic membrane pars flaccida and pars tensa displacements. Acta Otorhinolaryngolica Nova, 8, 277–281.

    Google Scholar 

  • Decraemer, W., & Funnell, W. (2008). Anatomical and mechanical properties of the tympanic membrane. In B. Ars (Ed.) Chronic otitis media: Pathogenesis-oriented therapeutic management (pp. 51–84). The Hague, The Netherlands: Kugler Publications.

    Google Scholar 

  • Decraemer, W. F., Creten, W. L., & Van Camp, K. J. (1984). Tympanometric middle ear pressure determination with two-component admittance meters. Scandinavian Audiology, 13, 165–172.

    CAS  PubMed  Google Scholar 

  • Diamant, M., Rubensohn, G., & Wallander, A. (1958). Otosalpingitis and mastoid pneumatization. Acta Oto-Laryngologica, 49, 381–389.

    CAS  PubMed  Google Scholar 

  • Dirckx, J. J. J., & Decraemer, W. F. (1991). Human tympanic membrane deformation under static pressure. Hearing Research, 51, 93–106.

    CAS  PubMed  Google Scholar 

  • Dirckx, J. J. J., & Decraemer, W. F. (1992). Area change and volume displacement of the human tympanic membrane under static pressure. Hearing Research, 62, 99–104.

    CAS  PubMed  Google Scholar 

  • Dirckx, J. J. J., & Decaemer, W. F. (1998). Contribution of pars flaccida volume displacement to middle ear pressure regulation. Acta Otorhinolaryngolica Nova, 8, 269–272.

    Google Scholar 

  • Dirckx, J. J. J., Decraemer, W. F., von Unge, M., & Larsson, C. (1997). Measurement and modeling of boundary shape and surface deformation of the Mongolian gerbil pars flaccida. Hearing Research, 111, 153–164.

    CAS  PubMed  Google Scholar 

  • Dirckx, J. J. J., Decraemer, W. F., von Unge, M., & Larsson, C. (1998). Volume displacement of the gerbil eardrum pars flaccida as a function of middle ear pressure. Hearing Research, 118, 35–46.

    CAS  PubMed  Google Scholar 

  • Doyle, W. J. (2000). Experimental results do not support a gas reserve function for the mastoid. International Journal of Pediatric Otorhinolaryngology, 52, 229–238.

    CAS  PubMed  Google Scholar 

  • Doyle, W. J. (2007). The mastoid as a functional rate-limiter of middle ear pressure change. International Journal of Pediatric Otorhinolaryngology, 71, 393–402.

    PubMed Central  PubMed  Google Scholar 

  • Doyle, W. J., & Seroky, J. T. (1994). Middle ear gas exchange in Rhesus monkeys. The Annals of Otology, Rhinology & Laryngology, 103(8), 636–645.

    CAS  Google Scholar 

  • Doyle, W. J., Seroky, J. T., & Alper, C. M. (1995). Gas exchange across the middle ear mucosa in monkeys: Estimation of exchange rate. Archives of Otolaryngology – Head & Neck Surgery, 121, 887–892.

    Google Scholar 

  • Doyle, W. J., Alper, C. M., & Seroky, J. T. (1999). Trans-mucosal inert gas exchange constants for the monkey middle ear. Auris Nasus Larynx, 26, 5–12.

    CAS  PubMed  Google Scholar 

  • Edelstein, D. R., & Parisier, S. C. (1989). Surgical techniques and recidivism in cholesteatoma. Otolaryngologic Clinics of North America, 22, 1029–1040.

    CAS  PubMed  Google Scholar 

  • Eden, A. R. (1981). Neural connections between the middle ear, Eustachian tube and brain: Implications for the reflex control of middle ear aeration. Annals of Otology, Rhinology & Laryngology, 90, 566–569.

    CAS  Google Scholar 

  • Eden, A. R., & Gannon, P. J. (1987). Neural control of middle ear aeration. Archives of Otolaryngology – Head & Neck Surgery, 113, 133–137.

    Google Scholar 

  • Eden, A. R., Laitman, J. T., & Gannon, P. J. (1990). Mechanisms of middle ear aeration: Anatomic and physiologic evidence in primates. The Laryngoscope, 100, 67–75.

    CAS  PubMed  Google Scholar 

  • Elner, Å. (1970). Gas diffusion through the tympanic membrane: A model study in the diffusion chamber. Acta Oto-Laryngologica, 69, 185–191.

    CAS  PubMed  Google Scholar 

  • Elner, Å. (1972). Indirect determination of gas absorption from the middle ear. Acta Oto-Laryngologica, 74, 191–196.

    CAS  PubMed  Google Scholar 

  • Elner, Å. (1977). Quantitative studies of gas absorption from the normal middle ear. Acta Oto-Laryngologica, 83, 25–28.

    CAS  PubMed  Google Scholar 

  • Elner, Å., Ingelstedt, S., & Ivarsson, A. (1971a). A method for studies of the middle ear mechanics. Acta Oto-Laryngologica, 72, 191–200.

    CAS  PubMed  Google Scholar 

  • Elner, Å., Ingelstedt, S., & Ivarsson, A. (1971b). The normal function of the Eustachian tube. Acta Oto-Laryngologica, 72, 320–328.

    CAS  PubMed  Google Scholar 

  • Fay, J. P., Puria, S, & Steele, C. R. (2006). The discordant eardrum. Proceedings of the National Academy of Sciences of the USA, 103, 19743–19748.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Felding, J. U. (1998). Middle ear gas – its composition in the normal and in the tubulated ear. Acta Oto-Laryngologica, Supplementum, 536, 1–57.

    CAS  Google Scholar 

  • Fleischer, G. (2010). Components for protecting and optimizing good hearing. In G. Theile (Ed.), A contribution to the international convention of sound designers. Proceedings of the VDT 26th International Convention (pp. 250–265). Bergisch-Gladbach, Germany.

    Google Scholar 

  • Flisberg, K., Ingelstedt, S., & Örtegren, U. (1963). On middle ear pressure. Acta Oto-Laryngologica, Supplementum, 182, 43–56.

    CAS  Google Scholar 

  • Gaihede, M. (2000). Middle ear volume and pressure effects on tympanometric middle ear pressure determination: Model experiments with special reference to secretory otitis media. Auris Nasus Larynx, 27, 231–239.

    CAS  PubMed  Google Scholar 

  • Gaihede, M., & Kjær, D. (1998). Positional changes and stabilization of middle ear pressure. Auris Nasus Larynx, 25, 255–259.

    CAS  PubMed  Google Scholar 

  • Gaihede, M., & Kabel, J. (2000). The normal pressure-volume relationship of the middle ear system and its biological variation. In J. J. Rosowski, S. N. Merchant (Eds.), The function and mechanics of normal, diseased and reconstructed middle ears. Proceedings of the 2nd International Symposium on Middle Ear Mechanics in Research and Otosurgery (pp. 59–70). Amsterdam: Kugler Publications.

    Google Scholar 

  • Gaihede, M., Lildholdt, T., & Lunding, J. (1997). Sequelae of secretory otitis media: Changes in middle ear mechanics. Acta Oto-Laryngologica, 117, 382–389.

    CAS  PubMed  Google Scholar 

  • Gaihede, M., Bramstoft, M., Thomsen, L. T., & Fogh, A. (2005). Accuracy of tympanometric middle ear pressure determination in otitis media with effusion: Dose dependent overestimation related to the viscosity and amount of effusion. Otology & Neurotology, 26, 5–11.

    Google Scholar 

  • Gaihede, M., Hald, K., Nørgaard, M., Wogelius, P., Buck, D., & Tveterås, K. (2007). Epidemiology of pressure regulation: Incidence of ventilation tube treatments and its preliminary correlation to subsequent ear surgery. In A. Huber & A. Eiber (Eds.), Proceedings of the 4th Symposium on Middle Ear Mechanics in Research and Otology (pp. 314–321). Singapore: World Scientific.

    Google Scholar 

  • Gaihede, M., Sami, S., & Dirckx J. J. J. (2008). Middle ear cleft pressure regulation – the role of a central control system. In B. Ars (Ed.), Chronic otitis media: Pathogenesis-oriented therapeutic management (pp. 227–240). Amsterdam: Kugler Publications.

    Google Scholar 

  • Gaihede, M., Dirckx, J. J. J., Jacobsen, H., Aernouts, J. E. F., Søvsø, M., & Tveterås, K. (2010). Middle ear pressure regulation – Complementary active actions of the mastoid and the Eustachian tube. Otology & Neurotology, 31, 603–611.

    Google Scholar 

  • Grøntved, A., Krogh, H. J., Christensen, P. H., Jensen, P. O., Schousboe, H. H., & Hentzer, E. (1989). Monitoring middle ear pressure by tympanometry: A study of middle ear pressure variation through seven hours. Acta Oto-Laryngologica, 108, 101–106.

    PubMed  Google Scholar 

  • Harell, M., Mover-Lev, H., Levy, D., & Sadé, J. (1996). Gas composition of the human nose and nasopharyngeal space. Acta Oto-Laryngologica, 116, 82–84.

    CAS  PubMed  Google Scholar 

  • Hecht, C. S., Gannon, P. J., & Eden, A. R. (1993). Motor innervation of the Eustachian tube muscles in the guinea pig. The Laryngoscope, 103, 1218–1226.

    CAS  PubMed  Google Scholar 

  • Hellström, S., & Stenfors, L. E. (1983). The pressure equilibrating function of the pars flaccida in middle ear mechanics. Acta Physiologica Scandinavica, 118, 337–341.

    PubMed  Google Scholar 

  • Henson, O. W., & Henson, M. M. (2000). The tympanic membrane: Highly developed smooth muscle arrays in the annulus fibrosus of mustached bats. Journal of the Association for Research in Otololaryngology, 1, 1–25.

    Google Scholar 

  • Hentzer, E. (1970). Histologic studies of the normal mucosa in the middle ear, mastoid cavities and Eustachian tube. Annals of Otology, Rhinology & Laryngology, 79, 825–833.

    CAS  Google Scholar 

  • Hergils, L., & Magnuson, B. (1990). Human middle ear gas composition studied by mass spectrometry. Acta Oto-Laryngologica, 110, 92–99.

    CAS  PubMed  Google Scholar 

  • Hergils, L., & Magnuson, B. (1998). Nasal gas composition in humans and its implication on middle ear pressure. Acta Oto-Laryngologica, 118, 697–700.

    CAS  PubMed  Google Scholar 

  • Hergils, L. G., Magnuson, B., & Falk, B. (1990). Different tympanometric procedures compared with direct pressure measurements in healthy ears. Scandinavian Audiology, 19, 183–186.

    CAS  PubMed  Google Scholar 

  • Holmquist, J. (1978). Aeration in chronic otitis media. Clinical Otolaryngology, 3, 279–284.

    CAS  PubMed  Google Scholar 

  • Honjo, I., Ushiro, K., Nozoe, T., & Okazaki, N. (1983). Cineroentgenographic and electromyographic studies of Eustachian tube function. Archives of Oto-Rhino-Laryngology, 238, 63–67.

    CAS  PubMed  Google Scholar 

  • Ingelstedt, S., & Örtegren, U. (1963). Qualitative testing of the Eustachian tube function. Acta Oto-Laryngologica, Supplementum, 182, 7–23.

    CAS  Google Scholar 

  • Ingelstedt, S., & Jonson, B. (1966). Mechanisms of the gas exchange in the normal human middle ear. Acta Oto-Laryngologica, Supplementum, 224, 452–461.

    Google Scholar 

  • Ingelstedt, S., Ivarsson, A., & Jonson, B. (1967). Mechanics of the human middle ear. Acta Oto-Laryngologica, Supplementum, 228, 1–58.

    Google Scholar 

  • Jacobsen, H., Dirckx, J. J. J., Gaihede, M., & Tveterås, K. (2007). Direct measurements and monitoring of middle ear pressure. In A. Eiber & A. Huber (Eds.), Middle ear mechanics in research and otology (pp. 26–35). Singapore: World Scientific.

    Google Scholar 

  • Job, A., Paucod, J.-C., O’Beirne, G. A., & Delon-Martin, C. (2011). Cortical representation of tympanic membrane movements due to pressure variation: An fMRI study. Human Brain Mapping, 32, 744–749.

    PubMed  Google Scholar 

  • Kania, R., Portier, F., Lecain, E., Marcusohn, Y., Ar, A., Herman, P., & Tran Ba Huy, P. (2004). Experimental model for investigating trans-mucosal gas exchanges in the middle ear of the rat. Acta Oto-Laryngologica, 124, 408–410.

    PubMed  Google Scholar 

  • Kania, R. E., Herman, P., Tran Ba Huy, P., & Ar, A. (2006). Role of nitrogen in transmucosal gas exchange rate in the rat middle ear. Journal of Applied Physiology, 101, 1281–1287.

    PubMed  Google Scholar 

  • Kindermann, C. A., Roithmann, R., & Lubianca Neto, J. F. (2008). Obstruction of the Eustachian tube orifice and pressure changes in the middle ear: Are they correlated? Annals of Otology, Rhinology & Laryngology, 117(6), 425–429.

    Google Scholar 

  • Lim, D. J. (1970). Human tympanic membrane: An ultrastructural observation. Acta Oto-laryngologica, 70, 176–186.

    CAS  PubMed  Google Scholar 

  • Lim, D., Jackson, D., & Bennett, J. (1975). Human middle ear corpuscles: A light and electron microscopic study. The Laryngoscope, 85, 1725–1737.

    CAS  PubMed  Google Scholar 

  • Loring, S. H., & Butler, J. P. (1987). Gas exchange in body cavities. In A. P. Fishman, L. E. Farhi, S. M. Tenny, & S. R. Geiger (Eds.), Handbook of physiology. Section 3: The respiratory system, Vol. IV. Gas exchange (pp. 283–295). Baltimore: American Physiological Society.

    Google Scholar 

  • Luntz, M., & Sadé, J. (1988). Growth of the Eustachian tube lumen with age. American Journal of Otolaryngology, 9, 195–198.

    CAS  PubMed  Google Scholar 

  • Luntz, M., Fuchs, C. & Sadé, J. (1997). Correlation between retractions of the pars flaccida and the pars tensa. The Journal of Laryngology and Otology, 111, 322–324.

    CAS  PubMed  Google Scholar 

  • Magnuson, B. (2003). Functions of the mastoid cell system: Auto-regulation of temperature and gas pressure. The Journal of Laryngology and Otology, 117, 99–103.

    PubMed  Google Scholar 

  • Magnuson, B., & Falk, B. (1988). Physiology of the Eustachian tube and middle ear pressure regulation. In A. F. Jahn & J. Santos-Sacchi (Eds.), Physiology of the ear (pp. 81–100). New York: Raven Press.

    Google Scholar 

  • Marcusohn, Y., Dirckx, J. J. J., & Ar, A. (2006). High-resolution measurements of middle ear gas volume changes in the rabbit enables estimation of its mucosal CO2 conductance. Journal of the Association for Research in Otolaryngology, 7, 236–245.

    PubMed Central  PubMed  Google Scholar 

  • Marcusohn, Y., Ar, A., & Dirckx, J. J. J. (2010). Perfusion and diffusion limitations in middle ear gas exchange: The exchange of CO2 as a test case. Hearing Research, 265, 11–14.

    PubMed  Google Scholar 

  • Metz, O. (1946). The acoustic impedance measured on normal and pathological ears. Copenhagen: Einar Munksgaard.

    Google Scholar 

  • Mondain, M., Vidal, D., Bouhanna, S., & Uziel, A. (1997). Monitoring eustachian tube opening: Preliminary results in normal subjects. The Laryngoscope, 107(10), 1414–1419.

    CAS  PubMed  Google Scholar 

  • Mover-Lev, H., Priner-Barenholz, R., Ar, A., & Sadé, J. (1998). Quantitative analysis of gas losses and gains in the middle ear. Respiration Physiology, 114, 143–151.

    CAS  PubMed  Google Scholar 

  • Nagai, T., & Tono, T. (1989). Encapsulated nerve corpuscles in the human tympanic membrane. Archives of Oto-Rhino-Laryngology, 246, 169–172.

    CAS  PubMed  Google Scholar 

  • Nagai, T., Nagai, M., Nagata, Y., & Morimitsu, T. (1989). The effects of anesthesia of the tympanic membrane on the Eustachian tube function. Archives of Oto-Rhino-Laryngology, 246, 210–212.

    CAS  PubMed  Google Scholar 

  • Ostfeld, E., Blonder, J., Crispin, M., & Szeinberg, A. (1980). The middle ear gas composition in air-ventilated dogs. Acta Oto-Laryngologica, 89, 105–108.

    CAS  PubMed  Google Scholar 

  • Özveren, M. F., Türe, U., Özek, M. M., & Pamir, M. N. (2003). Anatomic landmarks of the glossopharyngeal nerve: A microsurgical anatomic study. Neurosurgery, 52, 1400– 1410.

    PubMed  Google Scholar 

  • Park, M. S., Yoo, S. H., & Hoon, D. H. (2000). Measurement of surface area in the human mastoid air cell system. The Journal of Laryngology and Otology, 114, 93–96.

    CAS  PubMed  Google Scholar 

  • Piiper, J. (1965). Physiological equilibria of gas cavities in the body. In W. O. Fenn & H. Rahn (Eds.), Handbook of physiology. Section 3: Respiration, Vol. II (pp. 1205–1218). Washington, DC: American Physiological Society.

    Google Scholar 

  • Piiper, J., Canfield, R. E., & Rahn, H. (1962). Absorption of various inert gases from subcutaneous gas pockets in rats. Journal of Applied Physiology, 17(2), 268–274.

    CAS  PubMed  Google Scholar 

  • Politzer, A. (1867). Diagnose und Therapie der Ansammlung seröser Flüssigkeit in der Trommelhöhle. Wien Medicinishe Wochenschrift, 17, 244–247.

    Google Scholar 

  • Prades, J. M., Dumollard, J. M., Calloc’h, F., Merzougui, N., Veyret, C., & Martin, C. (1998). Descriptive anatomy of the human auditory tube. Surgical and Radiologic Anatomy, 20(5), 335–340.

    CAS  PubMed  Google Scholar 

  • Pulec, J. L., & Hahn, F. W., Jr. (1970). The abnormally patulous eustachian tube. Otolaryngologic Clinics of North America, 3(1), 131–140.

    CAS  PubMed  Google Scholar 

  • Riu, R., Flottes, L., Bouche, J., & Le Den, R. (1966). La physiologie de la trompe d’Eustache. Paris : Librairie Arnette.

    Google Scholar 

  • Rockley, T. J., & Hawke, W. M. (1992). The middle ear as a baroreceptor. Acta Oto-Laryngologica, 112, 816–823.

    CAS  PubMed  Google Scholar 

  • Sadé, J. (1992). The correlation of middle ear aeration with mastoid pneumatization. The mastoid as a pressure buffer. European Archives of Oto-Rhino-Laryngology, 249, 301–304.

    Google Scholar 

  • Sadé, J. (1993). Atelectatic tympanic membrane: Histologic study. The Annals of Otology, Rhinology & Laryngology, 102, 712–716.

    Google Scholar 

  • Sadé, J. (1997). On the function of the pars flaccida: Retraction of the pars flaccida and buffering of negative middle ear pressure. Acta Oto-Laryngologica, 117, 289–292.

    PubMed  Google Scholar 

  • Sadé, J. (2001). Hyperectasis: The hyperinflated tympanic membrane: The middle ear as an actively controlled system. Otology & Neurotology, 22, 133–139.

    Google Scholar 

  • Sadé, J., & Luntz, M. (1993). Dynamic measurement of gas composition in the middle ear. II Steady state values. Acta Oto-Laryngologica, 113, 353–357.

    PubMed  Google Scholar 

  • Sadé, J., & Ar, A. (1997). Middle ear and auditory tube: Middle ear clearance, gas exchange, and pressure regulation. Otolaryngology – Head & Neck Surgery, 116, 499–524.

    Google Scholar 

  • Sadé, J., Halevy, A., & Hadas, E. (1976). Clearance of middle ear effusions and middle ear pressures. Annals of Otology, Rhinology & Laryngology, Supplement, 25, 58–62.

    Google Scholar 

  • Sadé, J., Luntz, M., & Levy, D. (1995). Middle ear gas composition and middle ear aeration. Annals of Otology, Rhinology & Laryngology, 104(5), 369–373.

    Google Scholar 

  • Sadé, J., Russo, E., Fuchs, C., & Cohen, D. (2003). Is secretory otitis media a single disease entity? Annals of Otology, Rhinology & Laryngology, 112, 342–347.

    Google Scholar 

  • Sadé, J., Ar, A., & Marcusohn, Y. (2005). The hyperectatic outwardly-ballooned tympanic membrane as an indicator of an active mechanism of middle ear aeration. In J. J. J. Dirckx & J. Sadé (Eds.), Middle ear pressure regulation: Basic research and clinical observations. Otology & Neurotology, 26, 300–309.

    Google Scholar 

  • Sami, S. A. K., Gaihede, M., Nielsen, L. G., & Drewes, A. M. (2009). Early static pressure related evoked brain potentials. Indications of central middle ear pressure control in humans. Otology & Neurotology, 30, 649–656.

    Google Scholar 

  • Shanks, J., & Shelton, C. (1991). Basic principles and clinical applications of tympanometry. Otolaryngologic Clinics of North America, 24, 299–328.

    CAS  PubMed  Google Scholar 

  • Shrapnell, H. J. (1832). On the form and structure of the membrane tympani. London Medical Gazette, 10, 120–124.

    Google Scholar 

  • Songu, M., Aslan, A., Unlu, H. H., & Celik, O. (2009). Neural control of Eustachian tube function. The Laryngoscope, 119, 1198–1202.

    PubMed  Google Scholar 

  • Stenfors, L. E., Stalen, B., & Windblad, B. (1979). The role of pars flaccida in the mechanics of the middle ear. Acta Oto-Laryngologica, 88, 395–400.

    CAS  PubMed  Google Scholar 

  • Stenfors, L. E., Sadé, J., Helstrom, S., & Anniko, M. (2001). How can the hooded seal dive to a depth of 100 m without rupturing his tympanic membrane? A morphological and functional study. Acta Oto-Laryngologica, 121, 689–695.

    CAS  PubMed  Google Scholar 

  • Strachan, D., Hope, G., & Hussain, M. (1996). Long-term follow-up of children inserted with T-tubes as a primary procedure for otitis media with effusion. Clinical Otolaryngology & Allied Sciences, 21, 537–541.

    CAS  Google Scholar 

  • Sudhoff, H., & Tos, M. (2000). Pathogenesis of attic cholesteatoma: Clinical and immunohistochemical support for combination of the retraction and proliferation theory. The American Journal of Otology, 21, 786–782.

    CAS  PubMed  Google Scholar 

  • Swarts, J. D., Doyle, B. M. C., Alper, C. M., & Doyle, W. J. (2010). Surface area-volume relationships for the mastoid air cell system and tympanum in adult humans: Implications for mastoid function. Acta Oto-Laryngologica, 130(11), 1230–1236.

    PubMed Central  PubMed  Google Scholar 

  • Swarts, J. D., Alper, C. M., Mandel, E. M., Villardo, R., & Doyle, W. J. (2011). Eustachian tube function in adults without middle ear disease. Annals of Otology, Rhinology and Laryngology, 120(4), 220–225.

    Google Scholar 

  • Takahashi, H. (2001). The middle ear. The role of ventilation in disease and surgery. Tokyo: Springer.

    Google Scholar 

  • Takahashi, H., Hayashi, M., & Honjo, I. (1987a). Direct measurement of middle ear pressure through the Eustachian tube. Archives of Oto-Rhino-Laryngology, 243, 378–381.

    CAS  PubMed  Google Scholar 

  • Takahashi, H., Hayashi, M., & Honjo, I. (1987b). Compliance of the Eustachian tube in patients with otitis media with effusion. American Journal of Otolaryngology, 8(3), 154–156.

    CAS  PubMed  Google Scholar 

  • Takahashi, H., Iwanaga, T., Kaieda, S., Fukuda, T., Kumagami, H., Takasaki, K., Hasebe, S., & Funabiki, K. (2007). Mastoid obliteration combined with soft-wall reconstruction of posterior ear canal. European Archives of Oto-Rhino-Laryngology, 264, 867–871.

    PubMed  Google Scholar 

  • Therkildsen, A. G., & Gaihede, M. (2005). Accuracy of tympanometric middle ear pressure Determination: The role of direction and rate of pressure change with a fast modern tympanometer. Otology & Neurotology, 26, 252–256.

    Google Scholar 

  • Thomsen, K. A. (1960). Investigations on the tubal function and measurements of the middle ear pressure in pressure chamber. Acta Oto-Laryngologica, Supplementum, 140, 269–278.

    Google Scholar 

  • Tideholm, B., Jönsson, S., Carlborg, B., Welinder, R., & Grenner, J. (1996). Continuous 24–hour measurement of middle ear pressure. Acta Oto-Laryngologica, 116, 581–588.

    CAS  PubMed  Google Scholar 

  • Tideholm, B., Carlborg, B., Jönsson, S., & Bylander-Groth, A. (1998). Continuous long-term measurements of the middle ear pressure in subjects without a history of ear disease. Acta Oto-Laryngologica, 118, 369–374.

    CAS  PubMed  Google Scholar 

  • Tideholm, B., Brattmo, M., & Carlborg, B. (1999a). Middle ear pressure: Effect of body position and sleep. Acta Oto-Laryngologica, 119, 880–885.

    CAS  PubMed  Google Scholar 

  • Tideholm, B., Carlborg, B., & Brattmo, M. (1999b). Continuous long-term measurements of the middle ear pressure in subjects with symptoms of patulous Eustachian tube. Acta Oto-Laryngologica, 119, 809–815.

    CAS  PubMed  Google Scholar 

  • Tos, M., & Stangerup, S. E. (1984). Mastoid pneumatization in secretory otitis. Further support for the environmental theory. Acta Oto-Laryngologica, 98, 110–118.

    CAS  PubMed  Google Scholar 

  • Tos, M., Stangerup, S. E., Holm-Jensen, S., & Sørensen, C. H. (1984). Spontaneous course of secretory otitis and changes of the eardrum. Archives of Otolaryngology, 110, 281–289.

    CAS  PubMed  Google Scholar 

  • Uchimizu, H., Utahashi, H., Hamada, Y., & Aoki, K. (2005). Middle ear total pressure measurement as a useful parameter for outcome prediction in pediatric otitis media with effusion. International Journal of Pediatric Otorhinolaryngology, 69(12), 1659–1665.

    PubMed  Google Scholar 

  • Van Liew, H. D. (1962). Oxygen and carbon dioxide permeability of subcutaneous pockets. The American Journal of Physiology, 202(1), 53–58.

    Google Scholar 

  • Vercruysse, J. P., De Foer, B., Somers, T., Casselman, J. W., & Offeciers, E. (2008). Mastoid and epitympanic bony obliteration in pediatric cholesteatoma. Otology & Neurotology, 29, 953–960.

    Google Scholar 

  • von Unge, M., Decraemer, W. F., Dirckx, J. J. J., & Bagger-Sjöbäck, D. (1999). Tympanic membrane displacement patterns in experimental cholasteatoma. Hearing Research, 128, 1–15.

    Google Scholar 

  • Yuksel, S., Swarts, J. D., Banks, J., Seroky, J. T., & Doyle, W. J. (2009). In vivo measurement of O2 and CO2 gas exchange across the human tympanic membrane. Acta Oto-Laryngologica, 129, 716–725.

    PubMed Central  PubMed  Google Scholar 

  • Zahnert, T., Hüttenbrink, K. B., Mürbe, D., & Bornitz, M. (2000). Experimental investigations of the use of cartilage in tympanic membrane reconstruction. The American Journal of Otology, 21, 322–328.

    CAS  PubMed  Google Scholar 

  • Zielhuis, G. A., Rach, G. H., & van den Broek, P. (1990). The occurrence of otitis media with effusion in Dutch pre-school children. Clinical Otolaryngology & Allied Sciences, 15, 147–153.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joris J. J. Dirckx .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dirckx, J.J.J., Marcusohn, Y., Gaihede, M.L. (2013). Quasi-static Pressures in the Middle Ear Cleft. In: Puria, S., Fay, R., Popper, A. (eds) The Middle Ear. Springer Handbook of Auditory Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6591-1_5

Download citation

Publish with us

Policies and ethics