Skip to main content

Function and Acoustics of the Normal and Diseased Middle Ear

  • Chapter
  • First Online:
The Middle Ear

Part of the book series: Springer Handbook of Auditory Research ((SHAR))

Abstract

The middle ear helps convert compressional sound waves in the ear canal into transverse traveling waves in the cochlea. This chapter presents a conceptual framework for understanding middle ear function. The framework is first developed for the normal middle ear and then modified to include several pathological conditions. Data describing energy transfer between the ear canal and the cochlea are reviewed, including impedance measures, ossicular motions, and cochlear pressure measurements. The functions of individual parts of the normal middle ear are discussed for the tympanic membrane, the malleus and incus complex, the stapes, and the middle ear cavity. The effects of specific middle ear pathologies are discussed, including those affecting the middle ear cavity, the tympanic membrane, and the ossicles. Whenever possible, the diseases are represented by modifying the conceptual model of the normal middle ear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarnisalo, A. A., Cheng, J. T., Ravicz, M. E., Hulli, N., Harrington, E. J., Hernandez-Montes, M. S., Furlong, C., Merchant, S. N., & Rosowski, J. J. (2009). Middle ear mechanics of cartilage tympanoplasty evaluated by laser holography and vibrometry. Otology & Neurotology, 30, 1209–1214.

    Article  Google Scholar 

  • Aarnisalo, A. A., Cheng, J. T., Ravicz, M. E., Furlong, C., Merchant, S. N., & Rosowski, J. J. (2010). Motion of the tympanic membrane after cartilage tympanoplasty determined by stroboscopic holography. Hearing Research, 263, 78–84.

    Article  PubMed Central  PubMed  Google Scholar 

  • Aibara, R., Welsh, J. T., Puria, S., & Goode, R. L. (2001). Human middle-ear sound transfer function and cochlear input impedance. Hearing Research, 152, 100–109.

    Article  CAS  PubMed  Google Scholar 

  • Allen, J. B. (1986). Measurement of eardrum acoustic impedance. In J. B. Allen, J. L. Hall, A. Hubbard, S. T. Neely, & A. Tubis (Eds.), Peripheral auditory mechanisms (pp. 44–51). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Ball, G. R., Huber, A., & Goode, R. L. (1997). Computerized laser doppler interferometric scanning of the vibrating tympanic membrane. Ear, Nose, & Throat Journal, 76, 213–218.

    CAS  Google Scholar 

  • Chen, J. T., Hamade, M., Harrington, E., Furlong, C., Merchant, S. N., & Roswoski, J. J. (2012). Wave motion on the surface of the human membrane: holographic measurement and modeling analysis. Journal of the Acoustical Society of America, in press.

    Google Scholar 

  • Cheng, J. T., Aarnisalo, A. A., Harrington, E., Hernandez-Montes, M. S., Furlong, C., Merchant, S. N., & J. Rosowski, J. (2010). Motion of the surface of the human tympanic membrane measured with stroboscopic holography. Hearing Research, 263, 66–77.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cherukupally, S., Merchant, S., & Rosowski, J. J. (1998). Correlations between pathologic changes in the stapes and conductive hearing loss in otosclerosis. The Annals of Otology, Rhinology, and Laryngology, 107, 319–326.

    CAS  PubMed  Google Scholar 

  • Chien, W., Ravicz, M., Merchant, S., & Rosowski, J. (2006). The effect of methodological differences in the measurement of stapes motion in live and cadaver ears. Audiology & Neuro-otology, 11, 183–197.

    Article  Google Scholar 

  • Chien, W., Rosowski, J. J., Ravicz, M. E., Rauch, S. D., Smullen, J., & Merchant, S. N. (2009). Measurements of stapes velocity in live human ears. Hearing Research, 249, 54–61.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dahmann, H. (1930). Zur physiologie des hörens; experimentelle untersuchungen über die mechanik der gehörknöchelchenkette sowie über deren verhalten auf ton und luftdruck. Hals–Nasen–Ohrenheilkunde, 27, 329–368.

    Google Scholar 

  • Dai, C., Cheng, T., Wood, M. W., & Gan, R. Z. (2007). Fixation and detachment of superior and anterior malleolar ligaments in human middle ear: Experiment and modeling. Hearing Research, 230, 24–33.

    Article  PubMed Central  PubMed  Google Scholar 

  • Decraemer, W. F., Khanna, S. M., & Funnell, W. R. J. (1991). Malleus vibration model changes with frequency. Hearing Research, 54, 305–318.

    Article  CAS  PubMed  Google Scholar 

  • Decraemer, W. F., & Khanna, S. M. (1994). Modelling the malleus vibration as a rigid body motion with one rotational and one translational degree of freedom. Hearing Research, 72, 1–18.

    Article  CAS  PubMed  Google Scholar 

  • Decraemer, W., Khanna, S., & Funnell, W. (1999). Measurement and modeling of the three-dimensional vibration of the stapes in cat. In Abstracts of the Symposium on Recent Developments in Auditory Mechanics.

    Google Scholar 

  • Decraemer, W. F., de La Rochefoucauld, O., Dong, W., Khanna, S. M., & Olson, E. S. (2007). Scala vestibuli pressure and three-dimensional stapes velocity measured in direct succession in gerbil. Journal of the Acoustical Society of America, 121, 2774–2791.

    Article  CAS  PubMed  Google Scholar 

  • de La Rochefoucauld, O., & Olson, E. S. (2010). A sum of simple and complex motions on the eardrum and manubrium in gerbil. Hearing Research, 263, 9–15.

    Article  Google Scholar 

  • Farmer-Fedor, B. L., & Rabbitt, R. D. (2002). Acoustic intensity, impedance and reflection coefficient in the human ear canal. Journal of the Acoustical Society of America, 112, 600–620.

    Article  CAS  PubMed  Google Scholar 

  • Fay, J. P., Puria, S., & Steele, C. R. (2006). The discordant eardrum. Proceedings of the National Academy of Sciences of the USA, 103, 19743–19748.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fisch, U., Acar, G. O., & Huber, A. M. (2001). Malleostapedotomy in revision surgery for otosclerosis. Otology & Neurotology, 22, 776–785.

    Article  CAS  Google Scholar 

  • Funnell, W. R., Decraemer, W. F., & Khanna, S. M. (1987). On the damped frequency response of a finite-element model of the cat eardrum. Journal of the Acoustical Society of America, 81, 1851–1859.

    Article  CAS  PubMed  Google Scholar 

  • Gan, R. Z., & Wang, X. (2007). Multifield coupled finite element analysis for sound transmission in otitis media with effusion. Journal of the Acoustical Society of America, 122, 3527–3538.

    Article  PubMed  Google Scholar 

  • Gan, R. Z., Sun, Q., Dyer, R. K., Jr., Chang, K. H., & Dormer, K. J. (2002). Three-dimensional modeling of middle-ear biomechanics and its applications. Otology & Neurotology, 23, 271–280.

    Article  Google Scholar 

  • Gan, R. Z., Sun, Q., Feng, B., & Wood, M. W. (2006). Acoustic-structural coupled finite element analysis for sound transmission in human ear—Pressure distributions. Medical Engineering & Physics, 28, 395–404.

    Article  Google Scholar 

  • Glasscock, M. E., & Shambaugh, G. E. (1990). Surgery of the ear, 4th edition. Philadelphia: W. B. Saunders.

    Google Scholar 

  • Goode, R. L., Ball, G., & Nishihara, S. (1993). Measurement of umbo vibration in human subjects—method and possible clinical applications. American Journal of Otology, 14(3), 247–251.

    CAS  PubMed  Google Scholar 

  • Goode, R. L., Ball, G., Nishihara, S., & Nakamura, K. (1996). Laser doppler vibrometer (ldv)—a new clinical tool for the otologist. American Journal of Otology, 17, 813–822.

    CAS  PubMed  Google Scholar 

  • Gyo, K., Aritomo, H., & Goode, R. L. (1987). Measurement of the ossicular vibration ratio in human temporal bones by use of a video measuring system. Acta Oto-Laryngologica, 103, 87–95.

    Article  CAS  PubMed  Google Scholar 

  • Harris, J. P., Mehta, R. P., & Nadol, J. B. (2002). Malleus fixation: Clinical and histopathologic findings. The Annals of Otology, Rhinology, and Laryngology, 111, 246–254.

    PubMed  Google Scholar 

  • Hato, N., Stenfelt, S., & Goode, R. L. (2003). Three-dimensional stapes footplate motion in human temporal bones. Audiology & Neuro-otology, 8, 40–152.

    Google Scholar 

  • Helmholtz, H. L. (1868). Die mechanik der gehörknöchelchen und des trommelfells. Pflüg Archives European Journal of Physiology, 1–60.

    Google Scholar 

  • Huber, A., Linder, T., Ferrazzini, M., Schmid, S., Dillier, N., Stoeckli, S., & Fisch, U. (2001). Intraoperative assessment of stapes movement. The Annals of Otology, Rhinology, and Laryngology, 110, 31–35.

    CAS  PubMed  Google Scholar 

  • Huber, A., Sequeira, D., Breuninger, C., & Eiber, A. (2008a). The effects of complex stapes motion on the response of the cochlea. Otology & Neurotology, 29, 1187–1192.

    Article  Google Scholar 

  • Huber, A., Veraguth, D., Schmid, S., Roth, T., & Eiber, A. (2008b). Tight stapes prosthesis fixation leads to better functional results in otosclerosis surgery. Otology & Neurotology, 3292, 893–899.

    Article  Google Scholar 

  • Huber, A., Schrepfer, T., & Eiber, A. (2012). Clinical evaluation of the NiTi-BOND stapes prosthesis, an optimized shape memory alloy design. Otology & Neurotology, 33, 132–136.

    Article  Google Scholar 

  • Huber, A. M., Koike, T., Wada, H., Nandapalan, V., & Fisch, U. (2003). Fixation of the anterior mallear ligament: Diagnosis and consequences for hearing results in stapes surgery. The Annals of Otology, Rhinology, and Laryngology, 112, 348–355.

    PubMed  Google Scholar 

  • Hüttenbrink, K. (1988). The mechanics of the middle ear at static air pressures. Acta Oto-Laryngologica Supplement—, 451, 1–35.

    Google Scholar 

  • Karosi, T. & Sziklai, I. (2010). Etiopathogenesis of otosclerosis. European Archives of Oto-Rhino-Laryngology, 267, 1337–1349.

    Article  PubMed  Google Scholar 

  • Keefe, D. H., Bulen, J. C., Arehart, K. H., & Burns, E. M. (1993). Ear-canal impedance and reflection coefficient in human infants and adults. Journal of the Acoustical Society of America, 94(5), 2617–2638.

    Article  CAS  PubMed  Google Scholar 

  • Khanna, S. M., & Tonndorf, J. (1972). Tympanic membrane vibrations in cats studied by time-averaged holography. Journal of the Acoustical Society of America, 51(6), 1904–1920.

    Article  CAS  PubMed  Google Scholar 

  • Kirikae, I. (1960). The structure and function of the middle ear. Tokyo: University of Tokyo Press.

    Google Scholar 

  • Koike, T., Wada, H., & Kobayashi, T. (2002). Modeling of the human middle ear using the finite-element method. Journal of the Acoustical Society of America, 111, 1306–1317.

    Article  PubMed  Google Scholar 

  • Konrádsson, K. S., Ivarsson, A., & Bank, G. (1987). Scanning laser doppler vibrometry of the middle ear ossicles. Scandinavian Audiology, 16, 159–166.

    Article  PubMed  Google Scholar 

  • Kringlebotn, M. (1988). Network model for the human middle ear. Scandinavian Audiology, 17, 75–85.

    Article  CAS  PubMed  Google Scholar 

  • Laske, R., Röösli, C., Chatzimichalis, M., Sim, J., & Huber, A. M. (2011). The influence of prosthesis diameter in stapes surgery: A meta-analysis and systematic review of the literature. Otology & Neurotology, 32, 520–528.

    Article  Google Scholar 

  • Løkbergand, O. J., Høgmoen, K., & Gundersen, T. (1979). On holographic-interferometric investigations of the membrana tympani (living man). In G. v. Bally (Ed.), Holography in medicine and biology (11. 212–217). Berlin: Springer-Verlag.

    Google Scholar 

  • Manley, G. A., & Johnstone, B. M. (1974). Middle-ear function in the guinea pig. Journal of the Acoustical Society of America, 56, 571–576.

    Article  CAS  PubMed  Google Scholar 

  • Mehta, R. P., Rosowski, J. J., Voss, S. E., O’Neil, E., & Merchant, S. N. (2006). Determinants of hearing loss in perforations of the tympanic membrane. Otology & Neurotology, 27, 136–143.

    Article  Google Scholar 

  • Merchant, S. N., Ravicz, M. E., Puria, S., Voss, S. E., Whittemore, K. R., Jr., Peake, W. T., & Rosowski, J. J. (1997). Analysis of middle-ear mechanics and application to diseased and reconstructed ears. American Journal of Otology, 18, 139–154.

    CAS  PubMed  Google Scholar 

  • Nakajima, H. H., Ravicz, M. E., Merchant, S. N., Peake, W. T., & Rosowski, J. J. (2005a). Experimental ossicular fixations and the middle ear’s response to sound: Evidence for a flexible ossicular chain. Hearing Research, 204, 60–77.

    Article  PubMed  Google Scholar 

  • Nakajima, H. H., Ravicz, M. E., Rosowski, J. J., Peake, W. T., & Merchant, S. N. (2005b). Experimental and clinical studies of malleus fixation. The Laryngoscope, 115, 147–154.

    Article  PubMed  Google Scholar 

  • Nakajima, H. H., Dong, W., Olson, E. S., Merchant, S. N., Ravicz, M. E., & Rosowski, J. J. (2009). Differential intracochlear sound pressure measurements in normal human temporal bones. Journal of the Association for Research in Otolaryngology, 10, 23–36.

    Article  PubMed Central  PubMed  Google Scholar 

  • Nakajima, H. H., Pisano, D. V., Roosli, C., Hamade, M. A., Merchant, G. R., Mafoud, L., Halpin, C. F., Rosowski, J. J., & Merchant, S. N. (2012). Comparison of ear-canal reflectance and umbo velocity in patients with conductive hearing loss: A preliminary study. Ear and Hearing, 33, 35–43.

    Article  PubMed Central  PubMed  Google Scholar 

  • O’Connor, K. N., & Puria, S. (2008). Middle-ear circuit model parameters based on a population of human ears. Journal of the Acoustical Society of America, 123(1), 197–211.

    Article  PubMed  Google Scholar 

  • O’Connor, K. N., Tam, M., Blevins, N. H., & Puria, S. (2008). Tympanic membrane collagen fibers: A key to high-frequency sound conduction. The Laryngoscope, 118, 483490.

    Google Scholar 

  • Olson, E. S. (1998). Observing middle and inner ear mechanics with novel intracochlear pressure sensors. Journal of the Acoustical Society of America, 103, 3445–3463.

    Article  CAS  PubMed  Google Scholar 

  • Onchi, Y. (1961). Mechanism of the middle ear. Journal of the Acoustical Society of America, 33, 794–805.

    Article  Google Scholar 

  • Parent, P., & Allen, J. B. (2007). Wave model of the cat tympanic membrane. Journal of the Acoustical Society of America, 122, 918–931.

    Article  PubMed  Google Scholar 

  • Parent, P., & Allen, J. B. (2010). Time-domain wave model of the human tympanic membrane. Hearing Research, 263, 152–167.

    Article  PubMed  Google Scholar 

  • Peake, W., Rosowski, J. J., & Lynch, T. J. (1992). Middle-ear transmission: Acoustic versus ossicular coupling in cat and human. Hearing Research, 57, 245–268.

    Article  CAS  PubMed  Google Scholar 

  • Puria, S., & Allen, J. B. (1998). Measurements and model of the cat middle ear: Evidence of tympanic membrane acoustic delay. Journal of the Acoustical Society of America, 104, 3463–3481.

    Article  CAS  PubMed  Google Scholar 

  • Puria, S., & Steele, C. (2010). Tympanic membrane and malleus-incus-complex co-adaptations for high-frequency hearing in mammals. Hearing Research, 263, 183–190.

    Article  PubMed  Google Scholar 

  • Puria, S., Peake, W. T., & Rosowski, J. J. (1997). Sound-pressure measurements in the cochlear vestibule of human-cadaver ears. Journal of the Acoustical Society of America, 101, 2754–2770.

    Article  CAS  PubMed  Google Scholar 

  • Rasetshwane, D. M., & Neely, S. T. (2011). Inverse solution of ear-canal area function from reflectance. Journal of the Acoustical Society of America, 130, 3873–3881.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ravicz, M., Rosowski, J., & Merchant, S. (2004). Mechanisms of hearing loss resulting from middle-ear fluid. Hearing Research, 195, 103–130.

    Article  PubMed  Google Scholar 

  • Rosowski, J. J., & Merchant, S. N. (1995). Mechanical and acoustic analysis of middle ear reconstruction. American Journal of Otology, 16, 486–497.

    CAS  PubMed  Google Scholar 

  • Rosowski, J. J., Davis, P. J., Merchant, S. N., Donahue, K. M., & Coltrera, M. D. (1990). Cadaver middle ears as models for living ears: Comparisons of middle ear input impedance. The Annals of Otology, Rhinology, and Laryngology, 99(5), 403–412.

    CAS  PubMed  Google Scholar 

  • Rosowski, J. J., Cheng, J. T., Ravicz, M. E., Hulli, N., Harrington, E. J., Mdel, S. H.-M., & Furlong, C. (2009). Computer-assisted time-averaged holography of the motion of the surface of the tympanic membrane with sound stimuli of 0.4 to 25 khz. Hearing Research, 253, 83–96.

    Google Scholar 

  • Rosowski, J. J., Nakajima, H. H., Hamade, M. A., Mafoud, L., Merchant, G. R., Halpin, C. F., & Merchant, S. N. (2012). Ear-canal reflectance, umbo velocity and tympanometry in normal hearing adults. Ear and Hearing, 33, 19–34.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ruggero, M. A., & Temchin, A. N. (2003). Middle-ear transmission in humans: Wide-band, not frequency-tuned? Acoustic Research Letters Online, 4, 53–58.

    Article  Google Scholar 

  • Schuknecht, H. F. (1993). Pathology of the ear, 2nd edition. Malvern, PA: Lea & Febiger.

    Google Scholar 

  • Shearer, P. (1990). The deafness of Beethoven: An audiologic and medical overview. American Journal of Otology, 11, 370–374.

    Article  CAS  PubMed  Google Scholar 

  • Shera, C. A., & Zweig, G. (1992). Middle-ear phenomenology: The view from the three windows. Journal of the Acoustical Society of America, 92(3), 1356–1370.

    Article  CAS  PubMed  Google Scholar 

  • Sim, J., Puria, S., & Steele, C. R. (2004). Three-dimensional measurement and analysis of the isolated malleus-incus complex. In K. Gyo & H. Wada (Eds.), The 3rd International Symposium on Middle Ear Mechanics in Research and Otology, (pp. 61–67). Singapore: World Scientific.

    Chapter  Google Scholar 

  • Sim, J., Chatzimichalis, M., Lauxmann, M., Rsli, C., Eiber, A., & Huber, A. (2010). Complex stapes motions in human ears. Journal of the Association for Research in Otolaryngology, 11, 329–341.

    Article  PubMed Central  PubMed  Google Scholar 

  • Stepp, C. E., & Voss, S. E. (2005). Acoustics of the human middle-ear air space. Journal of the Acoustical Society of America, 118, 861–871.

    Article  PubMed  Google Scholar 

  • Tonndorf, J., & Khanna, S. M. (1970). The role of the tympanic membrane in middle ear transmission. Journal for Oto-Rhino-Laryngology and Its Related Specialties, 79, 743–753.

    CAS  Google Scholar 

  • Tonndorf, J., & Khanna, S. M. (1972). Tympanic membrane vibrations in human cadaver ears studied by time-averaged holography. Journal of the Acoustical Society of America, 52, 1221–1233.

    Article  CAS  PubMed  Google Scholar 

  • von Békésy, G. (1941). On the measurement of the amplitude of vibration of the ossicles with a capacitive probe [in German]. Akustische Zeitschrift, 6.

    Google Scholar 

  • von Békésy, G. (1960). Experiments in hearing. Edited by E. G. Wever. New York: McGraw-Hill.

    Google Scholar 

  • Voss, S., Horton, N., Woodbury, R., & Sheffield, K. (2008). Sources of variability in reflectance measurements on normal cadaver ears. Ear and Hearing, 29, 651–655.

    Article  PubMed  Google Scholar 

  • Voss, S., Merchant, G. R., & Horton, N. J. (2012). Effects of middle-ear disorders on power reflectance measured in cadaveric ear canals. Ear and Hearing, 33, 195–208.

    Article  PubMed Central  PubMed  Google Scholar 

  • Voss, S. E., Rosowski, J. J., Merchant, S. N., & Peake, W. T. (2000). Acoustic responses of the human middle ear. Hearing Research, 150, 43–69.

    Article  CAS  PubMed  Google Scholar 

  • Voss, S. E., Rosowski, J. J., Merchant, S. N., & Peake, W. T. (2001a). How do tympanic-membrane perforations affect human middle-ear sound transmission? Acta Oto-Laryngologica, 121, 169–173.

    Article  CAS  PubMed  Google Scholar 

  • Voss, S. E., Rosowski, J. J., Merchant, S. N., & Peake, W. T. (2001b). Middle-ear function with tympanic-membrane perforations. I. Measurements and mechanisms. Journal of the Acoustical Society of America, 110, 1432–1444.

    Article  CAS  PubMed  Google Scholar 

  • Voss, S. E., Rosowski, J. J., Merchant, S. N., & Peake, W. T. (2001c). Middle-ear function with tympanic-membrane perforations. II. A simple model. Journal of the Acoustical Society of America, 110, 1445–1452.

    Article  CAS  PubMed  Google Scholar 

  • Wada, H., Ando, M., Takeuchi, M., Sugawara, H., & Koike, T. (2002). Vibration measurement of the tympanic membrane of guinea pig temporal bones using time averaged speckle pattern interferometry. Journal of the Acoustical Society of America, 111, 2189 2199.

    Google Scholar 

  • Wever, E. G., & Lawrence, M. (1954). Physiological acoustics. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Willi, U. B., Ferranzzini, M. A., & Huber, A. M. (2002). The incudo-malleolar joint and sound transmission losses. Hearing Research, 174, 32–44.

    Article  PubMed  Google Scholar 

  • Zwislocki, J. (1962). Analysis of the middle-ear function. Part 1: Input impedance. Journal of the Acoustical Society of America, 34, 1514–1523.

    Google Scholar 

Download references

Acknowledgments

We thank the late Dr. Saumil N. Merchant for many helpful discussions relating to the clinical aspects of the work discussed here. We also thank Mike Ravicz for his extensive help in putting together older data sets for our use in some of the figures. Several colleagues provided substantial help in clarifying the most recent and important aspects of middle ear function: Dr. Jae Hoon helped us to summarize work related to ossicular motion, and Drs. John Rosowski and Lisa Olson helped us to describe recent work on tympanic-membrane motion. We thank Dr. Sunil Puria for his thorough and thoughtful comments that led to great improvements in the overall presentation. This work was supported by the National Institutes of Health (S. E. Voss, H. H. Nakajima, and C. A. Shera) and the National Science Foundation (S. E. Voss).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan E. Voss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Voss, S.E., Nakajima, H.H., Huber, A.M., Shera, C.A. (2013). Function and Acoustics of the Normal and Diseased Middle Ear. In: Puria, S., Fay, R., Popper, A. (eds) The Middle Ear. Springer Handbook of Auditory Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6591-1_4

Download citation

Publish with us

Policies and ethics