The Middle Ear pp 273-308 | Cite as

Middle Ear Hearing Devices

  • Sunil Puria
Part of the Springer Handbook of Auditory Research book series (SHAR)


Several decades ago the field of ophthalmology began to provide patients with options other than eyeglasses. Now the treatment of hearing loss is beginning to enter such an era, as novel and differentiated middle ear hearing devices (MEHDs) start to become available. The key distinguishing feature of MEHDs is that their output transducers are designed for mechanical vibrational output rather than acoustic output, which gives them the potential to achieve wider bandwidths than conventional acoustic hearing aids. The principles underlying various MEHD output-transducer designs are discussed in terms of how many points of connection are required to structures outside of the device and how those points are linked, such that each design falls into one of the following categories: (1) zero-connection-point (ZCP) transducers, (2) one-connection-point (OCP) transducers, (3) two-mechanically linked-connection-point (TMLCP) transducers, and (4) two-mechanically unlinked-connection-point (TMUCP) transducers. MEHDs are further classified as totally implantable (TI) types, partially implantable (PI) types, and nonimplantable (NI) systems that contact the eardrum. MEHD designs typically leave the ear canal open or widely vented, yet are still capable of delivering amplification at low frequencies—unlike open-canal acoustic hearing aids. They have also been shown to be preferred over acoustic hearing aids in some cases, as measured using self-reporting questionnaire-type evaluations and functional-gain measures. Over the coming decades, hearing scientists, otologists, engineers, and audiologists will continue to work together to change the standard of hearing health care by offering new and varied treatment options, such as MEHDs, to those with hearing impairment.


Battery Electromagnetic Hearing aids Implantable hearing device Microphone Multiband compressor Nonimplantable hearing device Photonic Piezoelectric Sensorineural hearing impairment Transducer 



The author thanks Kevin N. O’Connor for generating figures, providing significant editorial assistance, and providing general help in putting this book chapter together. The author also thanks Geoffrey R. Ball, Suzanne Carr Levy, Rodney Perkins, Jason Shelton, and Richard L. Goode for critical comments and suggestions on draft versions of this chapter. This work was supported by grants R01 DC 005960 and R448499 from the National Institute on Deafness and Other Communication Disorders (NIDCD) of the National Institutes of Health.

Disclosure Dr Puria declares that he has a financial interest in the EarLens Corporation which is in the process of developing the CHD discussed in this chapter.


  1. Ball, G. R. (1996). Implantable electromagnetic hearing transducer. USA Patent Pub. No. 5,554,096. USPTO.Google Scholar
  2. Ball, G. R. (2011). No more laughing at the deaf boy: A technological adventure from Silicon Valley and the Alps. Innsbruck: Haymon Verlag.Google Scholar
  3. Ball, G. R., Huber, A., & Goode, R. L. (1997). Scanning laser Doppler vibrometry of the middle ear ossicles. Ear, Nose, & Throat Journal, 76(4), 213–218, 220, 222.Google Scholar
  4. Ball, G. R., Robertson, W., III, & Julian, C. A. (1999). Two stage implantable microphone. USA Patent Pub. No. 5,859,916. USPTO.Google Scholar
  5. Beltrame, A. M., Martini, A., Prosser, S., Giarbini, N., & Streitberger, C. (2009). Coupling the Vibrant Soundbridge to cochlea round window: Auditory results in patients with mixed hearing loss. Otology & Neurotology, 30(2), 194–201.CrossRefGoogle Scholar
  6. Bernardeschi, D., Hoffman, C., Benchaa, T., Labassi, S., Beliaeff, M., Sterkers, O., & Grayeli, A. B. (2011). Functional results of Vibrant Soundbridge middle ear implants in conductive and mixed hearing losses. Audiology and Neuro-Otology, 16(6), 381–387.PubMedCrossRefGoogle Scholar
  7. Bernhard, H., Stieger, C., & Perriard, Y. (2011). Design of a semi-implantable hearing device for direct acoustic cochlear stimulation. IEEE Transactions on Biomedical Engineering, 58(2), 420–428.PubMedCrossRefGoogle Scholar
  8. Beutner, D., & Hüttenbrink, K. B. (2009). Passive and active middle ear implants. GMS Current Topics in Otorhinolaryngology, Head and Neck Surgery, 8, Doc09.Google Scholar
  9. Bruschini, L., Forli, F., Santoro, A., Bruschini, P., & Berrettini, S. (2009). Fully implantable Otologics MET Carina device for the treatment of sensorineural hearing loss. Preliminary surgical and clinical results. Acta Otorhinolaryngologica Italica, 29(2), 79–85.PubMedCentralPubMedGoogle Scholar
  10. Bruschini, L., Forli, F., Passetti, S., Bruschini, P., & Berrettini, S. (2010). Fully implantable Otologics MET Carina(™) device for the treatment of sensorineural and mixed hearing loss: Audio-otological results. Acta Oto-Laryngologica, 130(10), 1147–1153.PubMedCrossRefGoogle Scholar
  11. Carlile, S., & Schonstein, D. (2006). Frequency bandwidth and multi-talker environments. Proceedings of the 120th Convention of the Audio Engineering Society, 118(1), 353–363.Google Scholar
  12. Chen, D. A., Backous, D. D., Arriaga, M. A., Garvin, R., Kobylek, D., Littman, T., Walgren, S., & Lura, D. (2004). Phase 1 clinical trial results of the Envoy System: a totally implantable middle ear device for sensorineural hearing loss. Otolaryngology – Head and Neck Surgery, 131(6), 904–916.PubMedCrossRefGoogle Scholar
  13. Cho, J. H. (2004). Middle ear hearing aid transducer. USA Patent Pub. No. 6,735,318. USPTO.Google Scholar
  14. Colletti, V., Soli, S. D., Carner, M., & Colletti, L. (2006). Treatment of mixed hearing losses via implantation of a vibratory transducer on the round window. International Journal of Audiology, 45(10), 600–608.PubMedCrossRefGoogle Scholar
  15. Colletti, V., Carner, M., & Colletti, L. (2009). TORP vs round window implant for hearing restoration of patients with extensive ossicular chain defect. Acta Oto-Laryngologica, 129(4), 449–452.PubMedCrossRefGoogle Scholar
  16. Donahue, A., Dubno, J. R., & Beck, L. (2010). Guest editorial: Accessible and affordable hearing health care for adults with mild to moderate hearing loss. Ear and Hearing, 31(1), 2–6.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Fay, J. P., Puria, S., Rucker, P., Winstead, J. H., & Perkins, R. C. (2009). Energy delivery and microphone placement methods for improved comfort in an open ear canal hearing aid. USA Patent Pub. No. US 2009/0092271. USPTO.Google Scholar
  18. Fay, J. P., Puria, S., Felsenstein, L., Stone, J., & Pluvinage, V. (2010). Optomechanical electro-mechanical hearing devices with combined power and signal architecture. USA Patent Pub. No. 2010/0034409 A1. USPTO.Google Scholar
  19. Fay, J. P., Perkins, R., Levy, S. C., Nilsson, M., & Puria, S. (2013). Preliminary evaluation of a light based Contact Hearing Device for the hearing impaired. Otology & Neurotology (in press).Google Scholar
  20. Fraysse, B., Lavieille, J. P., Schmerber, S., Enée, V., Truy, E., Vincent, C., Vaneecloo, F. M., & Sterkers, O. (2001). A multicenter study of the Vibrant Soundbridge middle ear implant: Early clinical results and experience. Otology & Neurotology, 22(6), 952–961.CrossRefGoogle Scholar
  21. Goode, R. L. (1970). An implantable hearing aid. State of the art. Transactions – American Academy of Ophthalmology & Otolaryngology, 74(1), 128–139.Google Scholar
  22. Häusler, R., Stieger, C., Bernhard, H., & Kompis, M. (2008). A novel implantable hearing system with direct acoustic cochlear stimulation. Audiology and Neuro-Otology, 13(4), 247–256.PubMedCrossRefGoogle Scholar
  23. Huber, A. M., Ball, G. R., Veraguth, D., Dillier, N., Bodmer, D., & Sequeira, D. (2006). A new implantable middle ear hearing device for mixed hearing loss: A feasibility study in human temporal bones. Otology & Neurotology, 27(8), 1104–1109.CrossRefGoogle Scholar
  24. Hüttenbrink, K. B., Beutner, D., & Zahnert, T. (2010). Clinical results with an active middle ear implant in the oval window. Advances in Oto-Rhino-Laryngology, 69, 27–31.PubMedCrossRefGoogle Scholar
  25. Jenkins, H. A., Niparko, J. K., Slattery, W. H., Neely, J. G., & Fredrickson, J. M. (2004). Otologics Middle Ear Transducer Ossicular Stimulator: Performance results with varying degrees of sensorineural hearing loss. Acta Oto-Laryngologica, 124(4), 391–394.PubMedCrossRefGoogle Scholar
  26. Jenkins, H. A., Atkins, J. S., Horlbeck, D., Hoffer, M. E., Balough, B., Arigo, J. V., Alexiades, G., & Garvis, W. (2007). U.S. Phase I preliminary results of use of the Otologics MET Fully-Implantable Ossicular Stimulator. Otolaryngology – Head and Neck Surgery, 137(2), 206–212.PubMedCrossRefGoogle Scholar
  27. Jenkins, H. A., Atkins, J. S., Horlbeck, D., Hoffer, M. E., Balough, B., Alexiades, G., & Garvis, W. (2008). Otologics fully implantable hearing system: Phase I trial 1-year results. Otology & Neurotology, 29(4), 534–541.CrossRefGoogle Scholar
  28. Jung, E. S., Seong, K. W., Lim, H. G., Lee, J. H., & Cho, J. H. (2011). Implantable microphone with acoustic tube for fully implantable hearing devices. IEICE Electronics Express, 8(4), 215–219.CrossRefGoogle Scholar
  29. Kiefer, J., Arnold, W., & Staudenmaier, R. (2006). Round window stimulation with an implantable hearing aid (Soundbridge) combined with autogenous reconstruction of the auricle—a new approach. ORL; Journal for Oto-Rhino-Laryngology and its Related Specialties, 68(6), 378–385.PubMedCrossRefGoogle Scholar
  30. Kim, M. W., Kim, M. K., Yoon, Y. H., Kim, S. H., Park, I. Y., & Cho, J. H. (2007). Electrical model and analysis of vibration characteristic of differential floating mass transducer for fully-implantable middle ear hearing devices. World Congress on Medical Physics and Biomedical Engineering 2006. IFMBE Proceedings, Vol. 14, 3208–3211.Google Scholar
  31. Kochkin, S. (2002). MarkeTrak VI: Hearing aid industry market tracking survey 1984–2000. Retrieved from Accessed August 20, 2012.
  32. Kochkin, S. (2009). MarkeTrak VIII: 25-Year trends in the hearing health market. Hearing Review, 16(11), 12–31.Google Scholar
  33. Komori, M., Yanagihara, N., Hinohira, Y., Hato, N., & Gyo, K. (2010). Long-term results with the Rion E-type semi-implantable hearing aid. Otolaryngology – Head and Neck Surgery, 143(3), 422–428.PubMedCrossRefGoogle Scholar
  34. Komori, M., Yanagihara, N., Hinohira, Y., Hato, N., & Gyo, K. (2012). Re-implantation of the Rion E-type semi-implantable hearing aid: Status of long-term use and hearing outcomes in eight patients. Auris, Nasus, Larynx, 39(6), 572–576.PubMedCrossRefGoogle Scholar
  35. Kraus, E. M., Shohet, J. A., & Catalano, P. J. (2011). Envoy Esteem totally implantable hearing system: Phase 2 trial, 1-year hearing results. Otolaryngology – Head and Neck Surgery, 145(1), 100–109.PubMedCrossRefGoogle Scholar
  36. Labassi, S., & Beliaeff, M. (2005). Retrospective of 1000 patients implanted with a vibrant Soundbridge middle-ear implant. Cochlear Implants International, 6 (Suppl 1), 74–77.PubMedCrossRefGoogle Scholar
  37. Lee, C. F., Shih, C. H., Yu, J. F., Chen, J. H., Chou, Y. F., & Liu, T. C. (2008). A novel opto-electromagnetic actuator coupled to the tympanic membrane. Journal of Biomechanics, 41(16), 3515–3518.PubMedCrossRefGoogle Scholar
  38. Lenarz, T., Weber, B. P., Mack, K. F., Battmer, R. D., & Gnadeberg, D. (1998). [The Vibrant Soundbridge System: A new kind of hearing aid for sensorineural hearing loss. 1: Function and initial clinical experiences]. Laryngorhinootologie, 77(5), 247–255.PubMedCrossRefGoogle Scholar
  39. Lesinski, S. G., & Neukermans, A. P. (1998). Implantable hearing aid. USA Patent Pub. No. 5,772,575. USPTO.Google Scholar
  40. Luetje, C. M., Brackman, D., Balkany, T. J., Maw, J., Baker, R. S., Kelsall, D., Backous, D., Miyamoto, R., Parisier, S., & Arts, A. (2002). Phase III clinical trial results with the Vibrant Soundbridge implantable middle ear hearing device: A prospective controlled multicenter study. Otolaryngology – Head and Neck Surgery, 126(2), 97–107.PubMedCrossRefGoogle Scholar
  41. Moore, B. C., & Tan, C. T. (2003). Perceived naturalness of spectrally distorted speech and music. The Journal of the Acoustical Society of America, 114(1), 408–419.PubMedCrossRefGoogle Scholar
  42. Moore, B. C., Stone, M. A., & Alcántara, J. I. (2001). Comparison of the electroacoustic characteristics of five hearing aids. British Journal of Audiology, 35(5), 307–325.PubMedGoogle Scholar
  43. Moore, B. C., Füllgrabe, C., & Stone, M. A. (2010). Effect of spatial separation, extended bandwidth, and compression speed on intelligibility in a competing-speech task. The Journal of the Acoustical Society of America, 128(1), 360–371.PubMedCrossRefGoogle Scholar
  44. Mosnier, I., Sterkers, O., Bouccara, D., Labassi, S., Bebear, J.-P., Bordure, P., Dubreuil, C., Dumon, T., Frachet, B., Fraysse, B., Lavieille, J.-P., Magnan, J., Martin, C., Meyer, B., Mondain, M., Portmann, D., Robier, A., Schmerber, S., Thomassin, J.-M., Truy, E., Uziel, A., Vanecloo, F.-M., Vincent, C., & Ferrary, E. (2008). Benefit of the Vibrant Soundbridge device in patients implanted for 5 to 8 years. Ear and Hearing, 29(2), 281–284.PubMedCrossRefGoogle Scholar
  45. Murugasu, E., Puria, S., & Roberson, J. B., Jr. (2005). Malleus-to-footplate versus malleus-to-stapes-head ossicular reconstruction prostheses: Temporal bone pressure gain measurements and clinical audiological data. Otology & Neurotology, 26(4), 572–582.CrossRefGoogle Scholar
  46. Nakajima, H. H., Dong, W., Olson, E. S., Rosowski, J. J., Ravicz, M. E., & Merchant, S. N. (2010). Evaluation of round window stimulation using the floating mass transducer by intracochlear sound pressure measurements in human temporal bones. Otology & Neurotology, 31(3), 506–511.CrossRefGoogle Scholar
  47. O'Connor, K. N., & Puria, S. (2006). Middle ear cavity and ear canal pressure-driven stapes velocity responses in human cadaveric temporal bones. The Journal of the Acoustical Society of America, 120(3), 1517–1528.PubMedCrossRefGoogle Scholar
  48. Park, I. Y., Shimizu, Y., O'Connor, K. N., Puria, S., & Cho, J. H. (2011). Comparisons of electromagnetic and piezoelectric floating-mass transducers in human cadaveric temporal bones. Hearing Research, 272(1–2), 187–192.PubMedCrossRefGoogle Scholar
  49. Park, W. T., O'Connor, K. N., Chen, K. L., Mallon, J. R., Jr., Maetani, T., Dalal, P., Candler, R. N., Ayanoor-Vitikkate, V., Roberson, J. B., Jr., Puria, S., & Kenny, T. W. (2007). Ultraminiature encapsulated accelerometers as a fully implantable sensor for implantable hearing aids. Biomedical Microdevices, 9(6), 939–949.PubMedCrossRefGoogle Scholar
  50. Perkins, R. (1996). Earlens tympanic contact transducer: A new method of sound transduction to the human ear. Otolaryngology – Head and Neck Surgery, 114(6), 720–728.PubMedCrossRefGoogle Scholar
  51. Perkins, R. C., & Shennib, A. A. (1993). Contact transducer for hearing devices. USA Patent Pub. No. 5,259,032. USPTO.Google Scholar
  52. Perkins, R., Puria, S., Fay, J., & Winstead, J. H. (2007). Output transducers for hearing systems. USA Patent Pub. No. 2007/0100197. USPTO.Google Scholar
  53. Perkins, R., Fay, J. P., Rucker, P., Rosen, M., Olson, L., & Puria, S. (2010). The EarLens system: New sound transduction methods. Hearing Research, 263(1–2), 104–113PubMedCentralPubMedCrossRefGoogle Scholar
  54. Pluvinage, V., & Perkins, R. C. (2011). Systems and methods for photo-mechanical hearing transduction. USA Patent Pub. No. 7,867,160. USPTO.Google Scholar
  55. Puria, S. (2003). Measurements of human middle ear forward and reverse acoustics: implications for otoacoustic emissions. The Journal of the Acoustical Society of America, 113(5), 2773–2789.PubMedCrossRefGoogle Scholar
  56. Puria, S., & Perkins, R. C. (2003a). Flextensional output actuators for surgically implantable hearing aids. USA Patent Pub. No. US 6,629,922. USPTO.Google Scholar
  57. Puria, S., & Perkins, R. C. (2003b). Flextensional microphones for implantable hearing devices. USA Patent Pub. No. 6,554,761. USPTO.Google Scholar
  58. Puria, S., Vermiglio, A. J., Sr., Fay, J. P., & Soli, S. D. (2008). Hearing restoration: Better multitalker speech understanding. Presented at the Combined Otolarygological Spring Meeting (COSM) in Orlando, FL, May 1–4.Google Scholar
  59. Puria, S., & Perkins, R. C. (2010). Hearing system having an open chamber for housing components and reducing the occlusion effect. USA Patent Pub. No. 7,668,325. USPTO.Google Scholar
  60. Puria, S., Perkins, R. C., & Rucker, P. (2010a). Optically coupled acoustic middle ear implant systems and methods. USA Patent Pub. No. 2010/0312040 A1Google Scholar
  61. Puria, S., Fay, J. P., Felsenstein, L., Stone, J., Killion, M., & Pluvinage, V. (2010b). Optomechanical electro-mechanical hearing devices with separate power and signal components. USA Patent Pub. No. 2010/0034409 A1. USPTO.Google Scholar
  62. Puria, S., Rosen, M., Fay, J. P., Rucker, P., & Stone, J. (2012). Balanced armature devices and methods for hearing. USA Patent Pub. No. 13/069,262. USPTO.Google Scholar
  63. Rutschmann, J. (1959). Magnetic audition—Auditory stimulation by means of alternating magnetic fields acting on a permanent magnet fixed to the eardrum. IRE Transactions on Medical Electronics, ME-6(1), 22–23.CrossRefGoogle Scholar
  64. Schmerber, S., Troussier, J., Dumas, G., Lavieille, J. P., & Nguyen, D. Q. (2006). Hearing results with the titanium ossicular replacement prostheses. European Archives of Oto-Rhino-Laryngology, 263(4), 347–354.PubMedCrossRefGoogle Scholar
  65. Schmuziger, N., Schimmann, F., Wengen, D., Patscheke, J., & Probst, R. (2006). Long-term assessment after implantation of the Vibrant Soundbridge device. Otology & Neurotology, 27(2), 183–188.CrossRefGoogle Scholar
  66. Shohet, J. A., Kraus, E. M., & Catalano, P. J. (2011). Profound high-frequency sensorineural hearing loss treatment with a totally implantable hearing system. Otology & Neurotology, 32(9), 1428–1431.CrossRefGoogle Scholar
  67. Silverstein, H., Atkins, J., Thompson, J. H., Jr., & Gilman, N. (2005). Experience with the SOUNDTEC implantable hearing aid. Otology & Neurotology, 26(2), 211–217.CrossRefGoogle Scholar
  68. Snik, A. F., & Cremers, C. W. (1999). First audiometric results with the Vibrant soundbridge, a semi-implantable hearing device for sensorineural hearing loss. Audiology, 38(6), 335–338.PubMedCrossRefGoogle Scholar
  69. Snik, A. F., & Cremers, C. W. (2001). Vibrant semi-implantable hearing device with digital sound processing: Effective gain and speech perception. Archives of Otolaryngology – Head & Neck Surgery, 127(12), 1433–1437.CrossRefGoogle Scholar
  70. Song, B. S., Park, J. H., Yoon, Y. H., Kim, M. N., Park, S. K., Lee, S. H., & Cho, J. H. (2000). Differential floating mass type vibration transducer for MEI system. Engineering in Medicine and Biology, 2000. Proceedings of the 22nd Annual International Conference of the IEEE, Vol. 4, 2575–2578.Google Scholar
  71. Tjellstrom, A., Luetje, C. M., Hough, J. V., Arthur, B., Hertzmann, P., Katz, B., & Wallace, P. (1997). Acute human trial of the floating mass transducer. Ear, Nose, & Throat Journal, 76(4), 204–206, 209–210.Google Scholar
  72. Tysome, J. R., Moorthy, R., Lee, A., Jiang, D., & O'Connor, A. F. (2010). Systematic review of middle ear implants: do they improve hearing as much as conventional hearing AIDS? Otology & Neurotology, 31(9), 1369–1375.Google Scholar
  73. Valente, M. (2002). Hearing aids: Standards, options, and limitations (2nd ed.). New York: Thieme.Google Scholar
  74. Wilska, A. (1959). A direct method for determining threshold amplitudes of the eardrum at various frequencies. In H. G. Kobrak (Ed.), The middle ear (pp. 76–79). Chicago: University of Chicago Press.Google Scholar
  75. Wollenberg, B., Beltrame, M., Schönweiler, R., Gehrking, E., Nitsch, S., Steffen, A., & Frenzel, H. (2007). [Integration of the active middle ear implant Vibrant Soundbridge in total auricular reconstruction]. HNO, 55(5), 349–356.PubMedCrossRefGoogle Scholar
  76. Yanagihara, N., Sato, H., Hinohira, Y., Gyo, K., & Hori, K. (2001). Long-term results using a piezoelectric semi-implantable middle ear hearing device: The Rion Device E-type. Otolaryngologic Clinics of North America, 34(2), 389–400.PubMedCrossRefGoogle Scholar
  77. Zehlicke, T., Dahl, R., Just, T., & Pau, H. W. (2010). Vibroplasty involving direct coupling of the floating mass transducer to the oval window niche. The Journal of Laryngology and Otology, 124(7), 716–719.PubMedCrossRefGoogle Scholar
  78. Zenner, H. P., & Leysieffer, H. (2001). Total implantation of the Implex TICA hearing amplifier implant for high-frequency sensorineural hearing loss—The Tubingen University experience. Otolaryngologic Clinics of North America, 34(2), 417–446.PubMedCrossRefGoogle Scholar
  79. Zenner, H. P., & Rodriguez Jorge, J. (2010). Totally implantable active middle ear implants: Ten years' experience at the University of Tubingen. Advances in Oto-Rhino-Laryngology, 69, 72–84.PubMedCrossRefGoogle Scholar
  80. Zenner, H. P., Maassen, M. M., Plinkert, P. K., Zimmermann, R., Baumann, J. W., Reischl, G., & Leysieffer, H. (1998). [First implantation of a totally implantable electronic hearing aid in patients with inner ear hearing loss]. HNO, 46(10), 844–852.PubMedCrossRefGoogle Scholar
  81. Zenner, H. P., Limberger, A., Baumann, J. W., Reischl, G., Zalaman, I. M., Mauz, P. S., Sweetow, R. W., Plinkert, P. K., Zimmermann, R., Baumann, I., De Maddalena, H., Leysieffer, H., & Maassen, M. M. (2004). Phase III results with a totally implantable piezoelectric middle ear implant: Speech audiometry, spatial hearing and psychosocial adjustment. Acta Oto-Laryngologica, 124(2), 155–164.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Departments of Mechanical Engineering and Otolaryngology–Head and Neck SurgeryStanford UniversityStanfordUSA
  2. 2.EarLens CorporationRedwood CityUSA

Personalised recommendations