Skip to main content

Middle Ear Hearing Devices

  • Chapter
  • First Online:
The Middle Ear

Part of the book series: Springer Handbook of Auditory Research ((SHAR))

Abstract

Several decades ago the field of ophthalmology began to provide patients with options other than eyeglasses. Now the treatment of hearing loss is beginning to enter such an era, as novel and differentiated middle ear hearing devices (MEHDs) start to become available. The key distinguishing feature of MEHDs is that their output transducers are designed for mechanical vibrational output rather than acoustic output, which gives them the potential to achieve wider bandwidths than conventional acoustic hearing aids. The principles underlying various MEHD output-transducer designs are discussed in terms of how many points of connection are required to structures outside of the device and how those points are linked, such that each design falls into one of the following categories: (1) zero-connection-point (ZCP) transducers, (2) one-connection-point (OCP) transducers, (3) two-mechanically linked-connection-point (TMLCP) transducers, and (4) two-mechanically unlinked-connection-point (TMUCP) transducers. MEHDs are further classified as totally implantable (TI) types, partially implantable (PI) types, and nonimplantable (NI) systems that contact the eardrum. MEHD designs typically leave the ear canal open or widely vented, yet are still capable of delivering amplification at low frequencies—unlike open-canal acoustic hearing aids. They have also been shown to be preferred over acoustic hearing aids in some cases, as measured using self-reporting questionnaire-type evaluations and functional-gain measures. Over the coming decades, hearing scientists, otologists, engineers, and audiologists will continue to work together to change the standard of hearing health care by offering new and varied treatment options, such as MEHDs, to those with hearing impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ball, G. R. (1996). Implantable electromagnetic hearing transducer. USA Patent Pub. No. 5,554,096. USPTO.

    Google Scholar 

  • Ball, G. R. (2011). No more laughing at the deaf boy: A technological adventure from Silicon Valley and the Alps. Innsbruck: Haymon Verlag.

    Google Scholar 

  • Ball, G. R., Huber, A., & Goode, R. L. (1997). Scanning laser Doppler vibrometry of the middle ear ossicles. Ear, Nose, & Throat Journal, 76(4), 213–218, 220, 222.

    Google Scholar 

  • Ball, G. R., Robertson, W., III, & Julian, C. A. (1999). Two stage implantable microphone. USA Patent Pub. No. 5,859,916. USPTO.

    Google Scholar 

  • Beltrame, A. M., Martini, A., Prosser, S., Giarbini, N., & Streitberger, C. (2009). Coupling the Vibrant Soundbridge to cochlea round window: Auditory results in patients with mixed hearing loss. Otology & Neurotology, 30(2), 194–201.

    Article  Google Scholar 

  • Bernardeschi, D., Hoffman, C., Benchaa, T., Labassi, S., Beliaeff, M., Sterkers, O., & Grayeli, A. B. (2011). Functional results of Vibrant Soundbridge middle ear implants in conductive and mixed hearing losses. Audiology and Neuro-Otology, 16(6), 381–387.

    Article  PubMed  Google Scholar 

  • Bernhard, H., Stieger, C., & Perriard, Y. (2011). Design of a semi-implantable hearing device for direct acoustic cochlear stimulation. IEEE Transactions on Biomedical Engineering, 58(2), 420–428.

    Article  PubMed  Google Scholar 

  • Beutner, D., & HĂĽttenbrink, K. B. (2009). Passive and active middle ear implants. GMS Current Topics in Otorhinolaryngology, Head and Neck Surgery, 8, Doc09.

    Google Scholar 

  • Bruschini, L., Forli, F., Santoro, A., Bruschini, P., & Berrettini, S. (2009). Fully implantable Otologics MET Carina device for the treatment of sensorineural hearing loss. Preliminary surgical and clinical results. Acta Otorhinolaryngologica Italica, 29(2), 79–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bruschini, L., Forli, F., Passetti, S., Bruschini, P., & Berrettini, S. (2010). Fully implantable Otologics MET Carina(™) device for the treatment of sensorineural and mixed hearing loss: Audio-otological results. Acta Oto-Laryngologica, 130(10), 1147–1153.

    Article  PubMed  Google Scholar 

  • Carlile, S., & Schonstein, D. (2006). Frequency bandwidth and multi-talker environments. Proceedings of the 120th Convention of the Audio Engineering Society, 118(1), 353–363.

    Google Scholar 

  • Chen, D. A., Backous, D. D., Arriaga, M. A., Garvin, R., Kobylek, D., Littman, T., Walgren, S., & Lura, D. (2004). Phase 1 clinical trial results of the Envoy System: a totally implantable middle ear device for sensorineural hearing loss. Otolaryngology – Head and Neck Surgery, 131(6), 904–916.

    Article  PubMed  Google Scholar 

  • Cho, J. H. (2004). Middle ear hearing aid transducer. USA Patent Pub. No. 6,735,318. USPTO.

    Google Scholar 

  • Colletti, V., Soli, S. D., Carner, M., & Colletti, L. (2006). Treatment of mixed hearing losses via implantation of a vibratory transducer on the round window. International Journal of Audiology, 45(10), 600–608.

    Article  PubMed  Google Scholar 

  • Colletti, V., Carner, M., & Colletti, L. (2009). TORP vs round window implant for hearing restoration of patients with extensive ossicular chain defect. Acta Oto-Laryngologica, 129(4), 449–452.

    Article  CAS  PubMed  Google Scholar 

  • Donahue, A., Dubno, J. R., & Beck, L. (2010). Guest editorial: Accessible and affordable hearing health care for adults with mild to moderate hearing loss. Ear and Hearing, 31(1), 2–6.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fay, J. P., Puria, S., Rucker, P., Winstead, J. H., & Perkins, R. C. (2009). Energy delivery and microphone placement methods for improved comfort in an open ear canal hearing aid. USA Patent Pub. No. US 2009/0092271. USPTO.

    Google Scholar 

  • Fay, J. P., Puria, S., Felsenstein, L., Stone, J., & Pluvinage, V. (2010). Optomechanical electro-mechanical hearing devices with combined power and signal architecture. USA Patent Pub. No. 2010/0034409 A1. USPTO.

    Google Scholar 

  • Fay, J. P., Perkins, R., Levy, S. C., Nilsson, M., & Puria, S. (2013). Preliminary evaluation of a light based Contact Hearing Device for the hearing impaired. Otology & Neurotology (in press).

    Google Scholar 

  • Fraysse, B., Lavieille, J. P., Schmerber, S., EnĂ©e, V., Truy, E., Vincent, C., Vaneecloo, F. M., & Sterkers, O. (2001). A multicenter study of the Vibrant Soundbridge middle ear implant: Early clinical results and experience. Otology & Neurotology, 22(6), 952–961.

    Article  CAS  Google Scholar 

  • Goode, R. L. (1970). An implantable hearing aid. State of the art. Transactions – American Academy of Ophthalmology & Otolaryngology, 74(1), 128–139.

    CAS  Google Scholar 

  • Häusler, R., Stieger, C., Bernhard, H., & Kompis, M. (2008). A novel implantable hearing system with direct acoustic cochlear stimulation. Audiology and Neuro-Otology, 13(4), 247–256.

    Article  PubMed  Google Scholar 

  • Huber, A. M., Ball, G. R., Veraguth, D., Dillier, N., Bodmer, D., & Sequeira, D. (2006). A new implantable middle ear hearing device for mixed hearing loss: A feasibility study in human temporal bones. Otology & Neurotology, 27(8), 1104–1109.

    Article  Google Scholar 

  • HĂĽttenbrink, K. B., Beutner, D., & Zahnert, T. (2010). Clinical results with an active middle ear implant in the oval window. Advances in Oto-Rhino-Laryngology, 69, 27–31.

    Article  PubMed  Google Scholar 

  • Jenkins, H. A., Niparko, J. K., Slattery, W. H., Neely, J. G., & Fredrickson, J. M. (2004). Otologics Middle Ear Transducer Ossicular Stimulator: Performance results with varying degrees of sensorineural hearing loss. Acta Oto-Laryngologica, 124(4), 391–394.

    Article  PubMed  Google Scholar 

  • Jenkins, H. A., Atkins, J. S., Horlbeck, D., Hoffer, M. E., Balough, B., Arigo, J. V., Alexiades, G., & Garvis, W. (2007). U.S. Phase I preliminary results of use of the Otologics MET Fully-Implantable Ossicular Stimulator. Otolaryngology – Head and Neck Surgery, 137(2), 206–212.

    Article  PubMed  Google Scholar 

  • Jenkins, H. A., Atkins, J. S., Horlbeck, D., Hoffer, M. E., Balough, B., Alexiades, G., & Garvis, W. (2008). Otologics fully implantable hearing system: Phase I trial 1-year results. Otology & Neurotology, 29(4), 534–541.

    Article  Google Scholar 

  • Jung, E. S., Seong, K. W., Lim, H. G., Lee, J. H., & Cho, J. H. (2011). Implantable microphone with acoustic tube for fully implantable hearing devices. IEICE Electronics Express, 8(4), 215–219.

    Article  Google Scholar 

  • Kiefer, J., Arnold, W., & Staudenmaier, R. (2006). Round window stimulation with an implantable hearing aid (Soundbridge) combined with autogenous reconstruction of the auricle—a new approach. ORL; Journal for Oto-Rhino-Laryngology and its Related Specialties, 68(6), 378–385.

    Article  PubMed  Google Scholar 

  • Kim, M. W., Kim, M. K., Yoon, Y. H., Kim, S. H., Park, I. Y., & Cho, J. H. (2007). Electrical model and analysis of vibration characteristic of differential floating mass transducer for fully-implantable middle ear hearing devices. World Congress on Medical Physics and Biomedical Engineering 2006. IFMBE Proceedings, Vol. 14, 3208–3211.

    Google Scholar 

  • Kochkin, S. (2002). MarkeTrak VI: Hearing aid industry market tracking survey 1984–2000. Retrieved from http://www.knowles.com/search/ppt/MarkeTrak6.ppt. Accessed August 20, 2012.

  • Kochkin, S. (2009). MarkeTrak VIII: 25-Year trends in the hearing health market. Hearing Review, 16(11), 12–31.

    Google Scholar 

  • Komori, M., Yanagihara, N., Hinohira, Y., Hato, N., & Gyo, K. (2010). Long-term results with the Rion E-type semi-implantable hearing aid. Otolaryngology – Head and Neck Surgery, 143(3), 422–428.

    Article  PubMed  Google Scholar 

  • Komori, M., Yanagihara, N., Hinohira, Y., Hato, N., & Gyo, K. (2012). Re-implantation of the Rion E-type semi-implantable hearing aid: Status of long-term use and hearing outcomes in eight patients. Auris, Nasus, Larynx, 39(6), 572–576.

    Article  PubMed  Google Scholar 

  • Kraus, E. M., Shohet, J. A., & Catalano, P. J. (2011). Envoy Esteem totally implantable hearing system: Phase 2 trial, 1-year hearing results. Otolaryngology – Head and Neck Surgery, 145(1), 100–109.

    Article  PubMed  Google Scholar 

  • Labassi, S., & Beliaeff, M. (2005). Retrospective of 1000 patients implanted with a vibrant Soundbridge middle-ear implant. Cochlear Implants International, 6 (Suppl 1), 74–77.

    Article  PubMed  Google Scholar 

  • Lee, C. F., Shih, C. H., Yu, J. F., Chen, J. H., Chou, Y. F., & Liu, T. C. (2008). A novel opto-electromagnetic actuator coupled to the tympanic membrane. Journal of Biomechanics, 41(16), 3515–3518.

    Article  PubMed  Google Scholar 

  • Lenarz, T., Weber, B. P., Mack, K. F., Battmer, R. D., & Gnadeberg, D. (1998). [The Vibrant Soundbridge System: A new kind of hearing aid for sensorineural hearing loss. 1: Function and initial clinical experiences]. Laryngorhinootologie, 77(5), 247–255.

    Article  CAS  PubMed  Google Scholar 

  • Lesinski, S. G., & Neukermans, A. P. (1998). Implantable hearing aid. USA Patent Pub. No. 5,772,575. USPTO.

    Google Scholar 

  • Luetje, C. M., Brackman, D., Balkany, T. J., Maw, J., Baker, R. S., Kelsall, D., Backous, D., Miyamoto, R., Parisier, S., & Arts, A. (2002). Phase III clinical trial results with the Vibrant Soundbridge implantable middle ear hearing device: A prospective controlled multicenter study. Otolaryngology – Head and Neck Surgery, 126(2), 97–107.

    Article  PubMed  Google Scholar 

  • Moore, B. C., & Tan, C. T. (2003). Perceived naturalness of spectrally distorted speech and music. The Journal of the Acoustical Society of America, 114(1), 408–419.

    Article  PubMed  Google Scholar 

  • Moore, B. C., Stone, M. A., & Alcántara, J. I. (2001). Comparison of the electroacoustic characteristics of five hearing aids. British Journal of Audiology, 35(5), 307–325.

    CAS  PubMed  Google Scholar 

  • Moore, B. C., FĂĽllgrabe, C., & Stone, M. A. (2010). Effect of spatial separation, extended bandwidth, and compression speed on intelligibility in a competing-speech task. The Journal of the Acoustical Society of America, 128(1), 360–371.

    Article  PubMed  Google Scholar 

  • Mosnier, I., Sterkers, O., Bouccara, D., Labassi, S., Bebear, J.-P., Bordure, P., Dubreuil, C., Dumon, T., Frachet, B., Fraysse, B., Lavieille, J.-P., Magnan, J., Martin, C., Meyer, B., Mondain, M., Portmann, D., Robier, A., Schmerber, S., Thomassin, J.-M., Truy, E., Uziel, A., Vanecloo, F.-M., Vincent, C., & Ferrary, E. (2008). Benefit of the Vibrant Soundbridge device in patients implanted for 5 to 8 years. Ear and Hearing, 29(2), 281–284.

    Article  PubMed  Google Scholar 

  • Murugasu, E., Puria, S., & Roberson, J. B., Jr. (2005). Malleus-to-footplate versus malleus-to-stapes-head ossicular reconstruction prostheses: Temporal bone pressure gain measurements and clinical audiological data. Otology & Neurotology, 26(4), 572–582.

    Article  Google Scholar 

  • Nakajima, H. H., Dong, W., Olson, E. S., Rosowski, J. J., Ravicz, M. E., & Merchant, S. N. (2010). Evaluation of round window stimulation using the floating mass transducer by intracochlear sound pressure measurements in human temporal bones. Otology & Neurotology, 31(3), 506–511.

    Article  Google Scholar 

  • O'Connor, K. N., & Puria, S. (2006). Middle ear cavity and ear canal pressure-driven stapes velocity responses in human cadaveric temporal bones. The Journal of the Acoustical Society of America, 120(3), 1517–1528.

    Article  PubMed  Google Scholar 

  • Park, I. Y., Shimizu, Y., O'Connor, K. N., Puria, S., & Cho, J. H. (2011). Comparisons of electromagnetic and piezoelectric floating-mass transducers in human cadaveric temporal bones. Hearing Research, 272(1–2), 187–192.

    Article  PubMed  Google Scholar 

  • Park, W. T., O'Connor, K. N., Chen, K. L., Mallon, J. R., Jr., Maetani, T., Dalal, P., Candler, R. N., Ayanoor-Vitikkate, V., Roberson, J. B., Jr., Puria, S., & Kenny, T. W. (2007). Ultraminiature encapsulated accelerometers as a fully implantable sensor for implantable hearing aids. Biomedical Microdevices, 9(6), 939–949.

    Article  PubMed  Google Scholar 

  • Perkins, R. (1996). Earlens tympanic contact transducer: A new method of sound transduction to the human ear. Otolaryngology – Head and Neck Surgery, 114(6), 720–728.

    Article  CAS  PubMed  Google Scholar 

  • Perkins, R. C., & Shennib, A. A. (1993). Contact transducer for hearing devices. USA Patent Pub. No. 5,259,032. USPTO.

    Google Scholar 

  • Perkins, R., Puria, S., Fay, J., & Winstead, J. H. (2007). Output transducers for hearing systems. USA Patent Pub. No. 2007/0100197. USPTO.

    Google Scholar 

  • Perkins, R., Fay, J. P., Rucker, P., Rosen, M., Olson, L., & Puria, S. (2010). The EarLens system: New sound transduction methods. Hearing Research, 263(1–2), 104–113

    Article  PubMed Central  PubMed  Google Scholar 

  • Pluvinage, V., & Perkins, R. C. (2011). Systems and methods for photo-mechanical hearing transduction. USA Patent Pub. No. 7,867,160. USPTO.

    Google Scholar 

  • Puria, S. (2003). Measurements of human middle ear forward and reverse acoustics: implications for otoacoustic emissions. The Journal of the Acoustical Society of America, 113(5), 2773–2789.

    Article  PubMed  Google Scholar 

  • Puria, S., & Perkins, R. C. (2003a). Flextensional output actuators for surgically implantable hearing aids. USA Patent Pub. No. US 6,629,922. USPTO.

    Google Scholar 

  • Puria, S., & Perkins, R. C. (2003b). Flextensional microphones for implantable hearing devices. USA Patent Pub. No. 6,554,761. USPTO.

    Google Scholar 

  • Puria, S., Vermiglio, A. J., Sr., Fay, J. P., & Soli, S. D. (2008). Hearing restoration: Better multitalker speech understanding. Presented at the Combined Otolarygological Spring Meeting (COSM) in Orlando, FL, May 1–4.

    Google Scholar 

  • Puria, S., & Perkins, R. C. (2010). Hearing system having an open chamber for housing components and reducing the occlusion effect. USA Patent Pub. No. 7,668,325. USPTO.

    Google Scholar 

  • Puria, S., Perkins, R. C., & Rucker, P. (2010a). Optically coupled acoustic middle ear implant systems and methods. USA Patent Pub. No. 2010/0312040 A1

    Google Scholar 

  • Puria, S., Fay, J. P., Felsenstein, L., Stone, J., Killion, M., & Pluvinage, V. (2010b). Optomechanical electro-mechanical hearing devices with separate power and signal components. USA Patent Pub. No. 2010/0034409 A1. USPTO.

    Google Scholar 

  • Puria, S., Rosen, M., Fay, J. P., Rucker, P., & Stone, J. (2012). Balanced armature devices and methods for hearing. USA Patent Pub. No. 13/069,262. USPTO.

    Google Scholar 

  • Rutschmann, J. (1959). Magnetic audition—Auditory stimulation by means of alternating magnetic fields acting on a permanent magnet fixed to the eardrum. IRE Transactions on Medical Electronics, ME-6(1), 22–23.

    Article  Google Scholar 

  • Schmerber, S., Troussier, J., Dumas, G., Lavieille, J. P., & Nguyen, D. Q. (2006). Hearing results with the titanium ossicular replacement prostheses. European Archives of Oto-Rhino-Laryngology, 263(4), 347–354.

    Article  PubMed  Google Scholar 

  • Schmuziger, N., Schimmann, F., Wengen, D., Patscheke, J., & Probst, R. (2006). Long-term assessment after implantation of the Vibrant Soundbridge device. Otology & Neurotology, 27(2), 183–188.

    Article  Google Scholar 

  • Shohet, J. A., Kraus, E. M., & Catalano, P. J. (2011). Profound high-frequency sensorineural hearing loss treatment with a totally implantable hearing system. Otology & Neurotology, 32(9), 1428–1431.

    Article  Google Scholar 

  • Silverstein, H., Atkins, J., Thompson, J. H., Jr., & Gilman, N. (2005). Experience with the SOUNDTEC implantable hearing aid. Otology & Neurotology, 26(2), 211–217.

    Article  Google Scholar 

  • Snik, A. F., & Cremers, C. W. (1999). First audiometric results with the Vibrant soundbridge, a semi-implantable hearing device for sensorineural hearing loss. Audiology, 38(6), 335–338.

    Article  CAS  PubMed  Google Scholar 

  • Snik, A. F., & Cremers, C. W. (2001). Vibrant semi-implantable hearing device with digital sound processing: Effective gain and speech perception. Archives of Otolaryngology – Head & Neck Surgery, 127(12), 1433–1437.

    Article  CAS  Google Scholar 

  • Song, B. S., Park, J. H., Yoon, Y. H., Kim, M. N., Park, S. K., Lee, S. H., & Cho, J. H. (2000). Differential floating mass type vibration transducer for MEI system. Engineering in Medicine and Biology, 2000. Proceedings of the 22nd Annual International Conference of the IEEE, Vol. 4, 2575–2578.

    Google Scholar 

  • Tjellstrom, A., Luetje, C. M., Hough, J. V., Arthur, B., Hertzmann, P., Katz, B., & Wallace, P. (1997). Acute human trial of the floating mass transducer. Ear, Nose, & Throat Journal, 76(4), 204–206, 209–210.

    Google Scholar 

  • Tysome, J. R., Moorthy, R., Lee, A., Jiang, D., & O'Connor, A. F. (2010). Systematic review of middle ear implants: do they improve hearing as much as conventional hearing AIDS? Otology & Neurotology, 31(9), 1369–1375.

    Google Scholar 

  • Valente, M. (2002). Hearing aids: Standards, options, and limitations (2nd ed.). New York: Thieme.

    Google Scholar 

  • Wilska, A. (1959). A direct method for determining threshold amplitudes of the eardrum at various frequencies. In H. G. Kobrak (Ed.), The middle ear (pp. 76–79). Chicago: University of Chicago Press.

    Google Scholar 

  • Wollenberg, B., Beltrame, M., Schönweiler, R., Gehrking, E., Nitsch, S., Steffen, A., & Frenzel, H. (2007). [Integration of the active middle ear implant Vibrant Soundbridge in total auricular reconstruction]. HNO, 55(5), 349–356.

    Article  CAS  PubMed  Google Scholar 

  • Yanagihara, N., Sato, H., Hinohira, Y., Gyo, K., & Hori, K. (2001). Long-term results using a piezoelectric semi-implantable middle ear hearing device: The Rion Device E-type. Otolaryngologic Clinics of North America, 34(2), 389–400.

    Article  CAS  PubMed  Google Scholar 

  • Zehlicke, T., Dahl, R., Just, T., & Pau, H. W. (2010). Vibroplasty involving direct coupling of the floating mass transducer to the oval window niche. The Journal of Laryngology and Otology, 124(7), 716–719.

    Article  CAS  PubMed  Google Scholar 

  • Zenner, H. P., & Leysieffer, H. (2001). Total implantation of the Implex TICA hearing amplifier implant for high-frequency sensorineural hearing loss—The Tubingen University experience. Otolaryngologic Clinics of North America, 34(2), 417–446.

    Article  CAS  PubMed  Google Scholar 

  • Zenner, H. P., & Rodriguez Jorge, J. (2010). Totally implantable active middle ear implants: Ten years' experience at the University of Tubingen. Advances in Oto-Rhino-Laryngology, 69, 72–84.

    Article  CAS  PubMed  Google Scholar 

  • Zenner, H. P., Maassen, M. M., Plinkert, P. K., Zimmermann, R., Baumann, J. W., Reischl, G., & Leysieffer, H. (1998). [First implantation of a totally implantable electronic hearing aid in patients with inner ear hearing loss]. HNO, 46(10), 844–852.

    Article  CAS  PubMed  Google Scholar 

  • Zenner, H. P., Limberger, A., Baumann, J. W., Reischl, G., Zalaman, I. M., Mauz, P. S., Sweetow, R. W., Plinkert, P. K., Zimmermann, R., Baumann, I., De Maddalena, H., Leysieffer, H., & Maassen, M. M. (2004). Phase III results with a totally implantable piezoelectric middle ear implant: Speech audiometry, spatial hearing and psychosocial adjustment. Acta Oto-Laryngologica, 124(2), 155–164.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Kevin N. O’Connor for generating figures, providing significant editorial assistance, and providing general help in putting this book chapter together. The author also thanks Geoffrey R. Ball, Suzanne Carr Levy, Rodney Perkins, Jason Shelton, and Richard L. Goode for critical comments and suggestions on draft versions of this chapter. This work was supported by grants R01 DC 005960 and R448499 from the National Institute on Deafness and Other Communication Disorders (NIDCD) of the National Institutes of Health.

Disclosure Dr Puria declares that he has a financial interest in the EarLens Corporation which is in the process of developing the CHD discussed in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Puria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Puria, S. (2013). Middle Ear Hearing Devices. In: Puria, S., Fay, R., Popper, A. (eds) The Middle Ear. Springer Handbook of Auditory Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6591-1_10

Download citation

Publish with us

Policies and ethics