Skip to main content

Nonlinear Free Vibration of Curved Double Walled Carbon Nanotubes Using Differential Quadrature Method

  • Conference paper
  • First Online:
Book cover Topics in Nonlinear Dynamics, Volume 1

Abstract

Abstract In this study, nonlinear free vibration of a curved double walled carbon nanotube (DWCNT) is investigated, which are widely used in nano resonators, and sensors. Nonlinearities considered are due to large deflection of carbon nanotubes (geometric nonlinearity), initial curvature of tubes, and nonlinear interlayer van der Waals forces between inner and outer tubes. Assuming a harmonic solution in time domain, the differential quadrature method (DQM), is utilized to discretize the partial differential equations of motion in spatial domain, which resulted in a nonlinear set of algebraic equations of motion. The effect of nonlinearities, stiffness of the surrounding elastic medium, end conditions, and vibrational modes on the nonlinear free vibration of DWCNTs are investigated. The paper contribution can be divided into two main parts: in the first part, algebraic set of equation has been developed for the most general case considering different sources of nonlinearities and end conditions; hence, by selecting proper values for key parameters, the equation set can be converted into the equation of motion of desired application area. In the second part, the equations of motion are formulated using DQM in a matrix form which can be used in future modal and finite element analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  Google Scholar 

  2. Kim DH, Kim CD, Lee HR (2004) Effects of the ion irradiation of screen-printed carbon nanotubes for use in field emission display applications. Carbon 42(8–9):1807–1812

    Article  Google Scholar 

  3. Pumera M, Merkoci A, Alegret S (2006) Carbon nanotube-epoxy composites for electrochemical sensing. Sens Actuator B Chem 113(2):617–622

    Article  Google Scholar 

  4. Huang YP, Tangpong XW (2010) A distributed friction model for energy dissipation in carbon nanotube-based composites. Commun Nonlinear Sci Numer Simul 15(12):4171–4180

    Article  Google Scholar 

  5. Rahmat M, Hubert P (2011) Carbon nanotube-polymer interactions in nanocomposites: a review. Compos Sci Technol 72(1):72–84

    Article  Google Scholar 

  6. Chen WX, Tu JP, Wang LY, Gan HY, Xu ZD, Zhang XB (2003) Tribological application of carbon nanotubes in a metal-based composite coating and composites. Carbon 41(2):215–222

    Article  Google Scholar 

  7. Cao GX, Chen X, Kysar JW (2006) Thermal vibration and apparent thermal contraction of single-walled carbon nanotubes. J Mech Phys Solids 54(6):1206–1236

    Article  MATH  Google Scholar 

  8. Fu YM, Hong JW, Wang XQ (2006) Analysis of nonlinear vibration for embedded carbon nanotubes. J Sound Vib 296(4–5):746–756

    Article  Google Scholar 

  9. Rezaee M, Fekrmandi H (2010) Analysis of free nonlinear vibration behavior for curved embedded carbon nanotubes on elastic foundation. In: Proceedings of the ASME 10th biennial conference on engineering systems design and analysis, Istanbul, vol 5, pp 615–621

    Google Scholar 

  10. Yoon J, Ru CQ, Mioduchowski A (2003) Vibration of an embedded multiwall carbon nanotube. Compos Sci Technol 63(11):1533–1542

    Article  Google Scholar 

  11. Li R, Kardomateas GA (2007) Vibration characteristics of multiwalled carbon nanotubes embedded in elastic media by a nonlocal elastic shell model. J Appl Mech 74(6):1087–1094

    Article  Google Scholar 

  12. Yan Y, Zhang LX, Wang WQ (2008) Dynamical mode transitions of simply supported double-walled carbon nanotubes based on an elastic shell model. J Appl Phys 103(11):113523

    Article  Google Scholar 

  13. Ke LL, Xiang Y, Yang J, Kitipornchai S (2009) Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory. Comput Mater Sci 47(2):409–417

    Article  Google Scholar 

  14. Jiang LY, Huang Y, Jiang H, Ravichandran G, Gao H, Hwang KC, Liu B (2006) A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force. J Mech Phys Solids 54(11):2436–2452

    Article  MATH  Google Scholar 

  15. Lu WB, Wu J, Jiang LY, Huang Y, Hwang KC, Liu B (2007) A cohesive law for multi-wall carbon nanotubes. Philos Mag 87(14–15):2221–2232

    Article  Google Scholar 

  16. Lu WB, Wu J, Song J, Hwang KC, Jiang LY, Huang Y (2008) A cohesive law for interfaces between multi-wall carbon nanotubes and polymers due to the van der Waals interactions. Comput Method Appl M 197(41–42):3261–3267

    Article  MATH  Google Scholar 

  17. Xu, K. Y., Guo, X. N., and Ru, C. Q., 2006, Vibration of a double-walled carbon nanotube aroused by nonlinear intertube van der Waals forces, Journal of Applied Physics, 99(6):1–7

    Google Scholar 

  18. Cigeroglu E, Samandari H (2012) Nonlinear free vibration of double walled carbon nanotubes by using describing function method with multiple trial functions. Physica E 46:160–173

    Article  Google Scholar 

  19. Ansari R, Hemmatnezhad M (2012) Nonlinear finite element analysis for vibrations of double-walled carbon nanotubes. Nonlinear Dyn 67(1):373–383

    Article  MathSciNet  Google Scholar 

  20. Bellman R, Casti J (1971) Differential quadrature and long-term integration. J Math Anal Appl 34(2):235–238

    Article  MathSciNet  MATH  Google Scholar 

  21. Bert CW, Malik M (1996) Free vibration analysis of thin cylindrical shells by the differential quadrature method. J Press Vessel Technol ASME 118(1):1–12

    Article  Google Scholar 

  22. Civalek O, Demir C, Akgoz B (2010) Free vibration and bending analyses of cantilever microtubules based on nonlocal continuum model. Math Comput Appl 15(2):289–298

    MathSciNet  MATH  Google Scholar 

  23. Ansari R, Hemmatnezhad M (2011) Nonlinear vibrations of embedded multi-walled carbon nanotubes using a variational approach. Math Comput Model 53(5–6):927–938

    Article  MathSciNet  MATH  Google Scholar 

  24. Nayfeh AH, Balachandran B (1995) Applied nonlinear dynamics: analytical, computational, and experimental methods. Wiley, New York

    Book  MATH  Google Scholar 

  25. El-Mously M (2003) A Timoshenko-beam-on-Pasternak-foundation analogy for cylindrical shells. J Sound Vib 261(4):635–652

    Article  Google Scholar 

  26. Mehdipour I, Barari A, Kimiaeifar A, Domairry G (2012) Vibrational analysis of curved single-walled carbon nanotube on a Pasternak elastic foundation. Adv Eng Softw 48:1–5

    Article  Google Scholar 

  27. Mayoof FN, Hawwa MA (2009) Chaotic behavior of a curved carbon nanotube under harmonic excitation. Chaos Soliton Fract 42(3):1860–1867

    Article  Google Scholar 

  28. Shu C, Richards BE (1992) Application of generalized differential quadrature to solve 2-dimensional incompressible Navier-Stokes equations. Int J Numer Meth Fluids 15(7):791–798

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ender Cigeroglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Samandari, H., Cigeroglu, E. (2013). Nonlinear Free Vibration of Curved Double Walled Carbon Nanotubes Using Differential Quadrature Method. In: Kerschen, G., Adams, D., Carrella, A. (eds) Topics in Nonlinear Dynamics, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series, vol 35. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6570-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6570-6_25

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6569-0

  • Online ISBN: 978-1-4614-6570-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics