Skip to main content

Nonlinear Normal Modes of Nonconservative Systems

  • Conference paper
  • First Online:
Topics in Nonlinear Dynamics, Volume 1

Part of the book series: Conference Proceedings of the Society for Experimental Mechanics Series ((CPSEMS,volume 35))

Abstract

Linear modal analysis is a mature tool enjoying various applications ranging from bridges to satellites. Nevertheless, modal analysis fails in the presence of nonlinear dynamical phenomena and the development of a practical nonlinear analog of modal analysis is a current research topic. Recently, numerical techniques (e.g., harmonic balance, continuation of periodic solutions) were developed for the computation of nonlinear normal modes (NNMs). Because these methods are limited to conservative systems, the present study targets the computation of NNMs for nonconservative systems. Their definition as invariant manifolds in phase space is considered. Specifically, a new finite element technique is proposed to solve the set of partial differential equations governing the manifold geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosenberg RM (1966) On nonlinear vibrations of systems with many degrees of freedom. Adv Appl Mech 9:155–242

    Article  Google Scholar 

  2. Rosenberg RM (1962) The normal modes of nonlinear n-degree-of-freedom systems. J Appl Mech 29(1):7–14

    Article  MATH  Google Scholar 

  3. Shaw SW, Pierre C (1991) Non-linear normal modes and invariant manifolds. J Sound Vib 150(1):170–173

    Article  MathSciNet  Google Scholar 

  4. Shaw SW, Pierre C (1993) Normal modes for non-linear vibratory systems. J Sound Vib 164:40

    Article  MathSciNet  Google Scholar 

  5. Jezequel L, Lamarque CH (1991) Analysis of non-linear dynamical systems by the normal form theory. J Sound Vib 149(3):429–459

    Article  Google Scholar 

  6. King ME, Vakakis AF (1994) An energy-based formulation for computing nonlinear normal modes in undamped continuous systems. J Vib Acoust 116(3):332–340

    Article  Google Scholar 

  7. Mikhlin YV, Pilipchuk VN, Zevin AA, Vakakis AF, Manevitch LI (1996) Normal modes and localization in nonlinear systems. Wiley, New York

    MATH  Google Scholar 

  8. Touz C, Thomas O, Huberdeau A (2004) Asymptotic non-linear normal modes for large-amplitude vibrations of continuous structures. Comput Struct 82:2671–2682

    Article  Google Scholar 

  9. Slater J (1996) A numerical method for determining nonlinear normal modes. Nonlinear Dyn 10(1):19–30

    Article  Google Scholar 

  10. Lee YS, Kerschen G, Vakakis AF, Panagopoulos P, Bergman L, McFarland DM (2005) Complicated dynamics of a linear oscillator with a light, essentially nonlinear attachment. Phys Nonlinear Phenom 204:41–69

    Article  MathSciNet  MATH  Google Scholar 

  11. Arquier R, Bellizzi S, Bouc R, Cochelin B (2006) Two methods for the computation of nonlinear modes of vibrating systems at large amplitudes. Comput Struct 84:1565–1576

    Article  MathSciNet  Google Scholar 

  12. Wang F, Bajaj A (2007) Nonlinear normal modes in multi-mode models of an inertially coupled elastic structure. Nonlinear Dyn 47(1):25–47

    MathSciNet  MATH  Google Scholar 

  13. Peeters M, Vigui R, Srandour G, Kerschen G, Golinval JC (2009) Nonlinear normal modes, part II: toward a practical computation using numerical continuation techniques. Mech Syst Signal Process 23(1):195–216

    Article  Google Scholar 

  14. Peeters M, Kerschen G, Golinval JC, Stephan C (2011) Nonlinear normal modes of real-world structures: application to a full-scale aircraft. ASME Conf Proc 2011(54785):475–492

    Google Scholar 

  15. Pesheck E (2000) Reduced order modeling of nonlinear structural systems using nonlinear normal modes and invariant manifolds. PhD thesis, University of Michigan

    Google Scholar 

  16. Pesheck E, Pierre C, Shaw SW (2002) A new Galerkin-based approach for accurate non-linear normal modes through invariant manifolds. J Sound Vib 249(5):971–993

    Article  MathSciNet  MATH  Google Scholar 

  17. Blanc F, Touzé C, et al. (2013) On the numerical computation of nonlinear normal modes for reduced-order modelling of conservative vibratory systems. Mech Syst Signal Process 36(2):520–539

    Article  Google Scholar 

  18. Noreland D, Bellizzi S, Vergez C, Bouc R (2009) Nonlinear modes of clarinet-like musical instruments. J Sound Vib 324:983–1002

    Article  Google Scholar 

  19. Laxalde D, Legrand D (2011) Nonlinear modal analysis of mechanical systems with frictionless contact interfaces. Comput Mech 47(4):469–478

    Article  MathSciNet  MATH  Google Scholar 

  20. Kerschen G, Peeters M, Golinval JC, Vakakis AF (2009) Nonlinear normal modes, part I: a useful framework for the structural dynamicist. Mech Syst Signal Process 23(1):170–194

    Article  Google Scholar 

  21. Larsson S, Thome V (2003) Partial differential equations with numerical methods, vol 45. Springer, Berlin/Heidelberg

    MATH  Google Scholar 

  22. Renardy M, Rogers R (2004) An introduction to partial differential equations, vol 13. Springer, Berlin/Heidelberg

    MATH  Google Scholar 

  23. Donea J, Huerta A (2005) Finite element methods for flow problems. Wiley, Chichester

    Google Scholar 

  24. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32:199–259

    Article  MathSciNet  MATH  Google Scholar 

  25. Hughes TJR, Tezduyar TE (1984) Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible euler equations. Comput Methods Appl Mech Eng 45(1–3):217–284

    Article  MathSciNet  MATH  Google Scholar 

  26. Knobloch P (2008) On the definition of the SUPG parameter. Electron Trans Numer Anal 32:76–89

    MathSciNet  MATH  Google Scholar 

  27. Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190:411–430

    Article  MATH  Google Scholar 

  28. Akin JE, Tezduyar TE (2004) Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order elements. Comput Methods Appl Mech Eng 193:1909–1922

    Article  MATH  Google Scholar 

  29. Codina R, Oate E, Cervera M (1992) The intrinsic time for the streamline upwind/Petrov-Galerkin formulation using quadratic elements. Comput Methods Appl Mech Eng 94(2):239–262

    Article  MATH  Google Scholar 

  30. Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193:2019–2032

    Article  MATH  Google Scholar 

  31. Xu Z, Accorsi M (2004) Finite element mesh update methods for fluid-structure interaction simulations. Finite Elem Anal Des 40:1259–1269

    Article  Google Scholar 

  32. Cochelin B, Vergez C (2009) A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions. J Sound Vib 324:243–262

    Article  Google Scholar 

Download references

Acknowledgements

The author L. Renson would like to acknowledge the Belgian National Fund for Scientific Research (FRIA fellowship) for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Renson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Renson, L., Kerschen, G. (2013). Nonlinear Normal Modes of Nonconservative Systems. In: Kerschen, G., Adams, D., Carrella, A. (eds) Topics in Nonlinear Dynamics, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series, vol 35. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6570-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6570-6_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6569-0

  • Online ISBN: 978-1-4614-6570-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics