Toxic Neuromuscular Transmission Disorders



The neurotoxins affecting neuromuscular transmission may be broadly classified into three major categories: pharmacological, biological, and environmental. This chapter focuses on the direct effects of neurotoxins affecting neuromuscular transmission of man but is not meant to be a treatise on the broad topic of neuromuscular neurotoxicology. It is not possible to elaborate on all of the pharmacological and physiological effects of particular toxins beyond the scope of the NMJ nor will it discuss in detail the neuromuscular blocking effects of these neurotoxins in animals or experimental preparations.


neurotoxicology toxicology myasthenia gravis botulism organophosphates biological toxins neuromuscular transmission Lambert-Eaton syndrome adverse events drug-induced 


  1. 1.
    Fambrough DM, Drachman DB, Satymurti S. Neuromuscular function in myasthenia gravis: decreased acetylcholine receptors. Science. 1973;182:293–5.PubMedGoogle Scholar
  2. 2.
    De Aizpurua HJ, Lambert EH, Griesmann GE, Olivera M, Lennon VA. Antagonism of voltage-gated calcium channels in small cell carcinomas of patients with and without Lambert-Eaton myasthenic syndrome by autoantibodies omega-conotoxin and adenosine. Cancer Res. 1988;48:4719–24.PubMedGoogle Scholar
  3. 3.
    Barrons RW. Drug-induced neuromuscular blockade and myasthenia gravis. Pharmacotherapy. 1977;17(6):1220–32.Google Scholar
  4. 4.
    Howard JF. Adverse drug effects on neuromuscular transmission. Semin Neurol. 1990;10:89–102.PubMedGoogle Scholar
  5. 5.
    Kaeser HE. Drug-induced myasthenic syndromes. Acta Neurol Scand Suppl. 1984;100:39–47.PubMedGoogle Scholar
  6. 6.
    Swift TR. Disorders of neuromuscular transmission other than myasthenia gravis. Muscle Nerve. 1981;4(4):334–53.PubMedGoogle Scholar
  7. 7.
    Argov Z, Mastaglia FL. Drug therapy: disorders of neuromuscular transmission caused by drugs. N Engl J Med. 1979;301(8):409–13.PubMedGoogle Scholar
  8. 8.
    Echols RM. Understanding the regulatory hurdles for antibacterial drug development in the post-Ketek world. Ann N Y Acad Sci. 2011;1241(1):153–61.PubMedGoogle Scholar
  9. 9.
    Jones SC, Sorbello A, Boucher RM. Fluoroquinolone-associated myasthenia gravis exacerbation: evaluation of postmarketing reports from the US FDA adverse event reporting system and a literature review. Drug Saf. 2011;34(10):839–47.PubMedGoogle Scholar
  10. 10.
    Pittinger C, Adamson R. Antibiotic blockade of neuromuscular function. Annu Rev Pharmacol. 1972;12:109–84.Google Scholar
  11. 11.
    Singh YN, Marshall IG, Harvey AL. Reversal of antibiotic-induced muscle paralysis by 3, 4- diaminopyridine. J Pharm Pharmac. 1978;30:249–50.Google Scholar
  12. 12.
    Caputy AJ, Kim YI, Sanders DB. The neuromuscular blocking effects of therapeutic concentrations of various antibiotics on normal rat skeletal muscle: a quantitative comparison. J Pharmacol Exp Therapeut. 1981;217:369–78.Google Scholar
  13. 13.
    Snavely SR, Hodges GR. The neurotoxicity of antibacterial agents. [Review] [293 refs]. Ann Intern Med. 1984;101(1):92–104.PubMedGoogle Scholar
  14. 14.
    Cadisch R, Streit E, Hartmann K. [Exacerbation of pseudoparalytic myasthenia gravis following azithromycin (Zithromax)]. [German]. Schweizerische Medizinische Wochenschrift 1996; Journal Suisse de Medecine. 126(8):308–10.Google Scholar
  15. 15.
    Pradhan S, Pardasani V, Ramteke K. Azithromycin-induced ­myasthenic crisis: reversibility with calcium gluconate. Neurol India. 2009;57(3):352–3.PubMedGoogle Scholar
  16. 16.
    Nieman RB, Sharma K, Edelberg H, Caffe SE. Telithromycin and myasthenia gravis. Clin Infect Dis. 2003;37(11):1579.PubMedGoogle Scholar
  17. 17.
    Moreno Alvarez PJ, Madurga SM. Telithromycin and exacerbation in myasthenia gravis. Farm Hosp. 2003;27(3):199–200.PubMedGoogle Scholar
  18. 18.
    Perrot X, Bernard N, Vial C, et al. Myasthenia gravis exacerbation or unmasking associated with telithromycin treatment. Neurology. 2006;67(12):2256–8.PubMedGoogle Scholar
  19. 19.
    Jennett AM, Bali D, Jasti P, Shah B, Browning LA. Telithromycin and myasthenic crisis. Clin Infect Dis. 2006;43(12):1621–2.PubMedGoogle Scholar
  20. 20.
    Roquer J, Cano A, Seoane JL, Pou SA. Myasthenia gravis and ciprofloxacin [letter]. Acta Neurol Scand. 1996;94(6):419–20.PubMedGoogle Scholar
  21. 21.
    Samuelson RJ, Giesecke AHJ, Kallus FT, Stanley VF. Lincomycin-curare interaction. Anesth Analg. 1975;54:103–5.PubMedGoogle Scholar
  22. 22.
    Fogdall RP, Miller RD. Prolongation of a pancuronium-induced neuromuscular blockade by clindamycin. Anesthesiology. 1974;41(4):407–8.PubMedGoogle Scholar
  23. 23.
    McQuillen MP, Engbaek L. Mechanism of colistin-induced neuromuscular depression. Arch Neurol. 1975;32:235–8.PubMedGoogle Scholar
  24. 24.
    Moore B, Safani M, Keesey J. Possible exacerbation of myasthenia gravis by ciprofloxacin [letter]. Lancet. 1988;1:882.PubMedGoogle Scholar
  25. 25.
    Decker DA, Fincham RW. Respiratory arrest in myasthenia gravis with colistimethate therapy. Arch Neurol. 1971;25:141–4.PubMedGoogle Scholar
  26. 26.
    Argov Z, Brenner T, Abramsky O. Ampicillin may aggravate clinical and experimental myasthenia gravis. Arch Neurol. 1986;43(3):255–6.PubMedGoogle Scholar
  27. 27.
    Howard JF, Johnson BR, Quint SR. The effects of beta-adrenergic antagonists on neuromuscular transmission in rat skeletal muscle. Soc Neurosci Abstr. 1987;13:147.Google Scholar
  28. 28.
    Coppeto JR. Timolol-associated myasthenia gravis. Am J Ophthalmol. 1984;98:244–5.PubMedGoogle Scholar
  29. 29.
    Verkijk A. Worsening of myasthenia gravis with timolol maleate eyedrops. Ann Neurol. 1985;17(2):211–2.PubMedGoogle Scholar
  30. 30.
    Bikhazi GB, Leung I, Foldes FF. Interaction of neuromuscular blocking agents with calcium channel blockers. Anesthesiology. 1982;57:A268.Google Scholar
  31. 31.
    Van der Kloot W, Kita H. The effects of verapamil on muscle action potentials in the frog and crayfish and on neuromuscular transmission in the crayfish. Comp Biochem Physiol. 1975;50C:121–5.Google Scholar
  32. 32.
    Ribera AB, Nastuk WL. The actions of verapamil at the neuromuscular junction. Comp Biochem Physiol C Comp Pharmacol Toxicol. 1989;93C:137–41.Google Scholar
  33. 33.
    Adams RJ, Rivner MH, Salazar J, Swift TR. Effects of oral calcium antagonists on neuromuscular transmission. Neurology. 1984;34 Suppl 1Suppl 1:132–3.Google Scholar
  34. 34.
    Krendel DA, Hopkins LC. Adverse effect of verapamil in a patient with the Lambert-Eaton syndrome. Muscle Nerve. 1986;9(6):519–22.PubMedGoogle Scholar
  35. 35.
    Kornfeld P, Horowitz SH, Genkins G, Papatestas AE. Myasthenia gravis unmasked by antiarrhythmic agents. Mt Sinai J Med. 1976;43(1):10–4.PubMedGoogle Scholar
  36. 36.
    Lecky BR, Weir D, Chong E. Exacerbation of myasthenia by propafenone [letter]. J Neurol Neurosurg Psychiatry. 1991;54(4):377.Google Scholar
  37. 37.
    Fierro B, Castiglione MG, Salemi G, Savettieri G. Myasthenia-like syndrome induced by cardiovascular agents. Report of a case. Ital J Neurol Sci. 1987;8(2):167–9.PubMedGoogle Scholar
  38. 38.
    Weisman SJ. Masked myasthenia gravis. J Am Med Assoc. 1949;141:917–8.PubMedGoogle Scholar
  39. 39.
    Shy ME, Lange DJ, Howard JF, Gold AP, Lovelace RE, Penn AS. Quinidine exacerbating myasthenia gravis: a case report and ­intracellular recordings. Ann Neurol. 1985;18:120.Google Scholar
  40. 40.
    Stoffer SS, Chandler JH. Quinidine-induced exacerbation of myasthenia gravis in patient with Graves’ disease. Arch Intern Med. 1980;140(2):283–4.PubMedGoogle Scholar
  41. 41.
    Miller RD, Way WL, Katzung BG. The neuromuscular effects of quinidine. Proc Soc Exp Biol Med. 1968;129:215–8.PubMedGoogle Scholar
  42. 42.
    de Sousa E, Howard J. More evidence for the association between statins and myasthenia gravis. Muscle Nerve. 2008;38(3):1085–6.PubMedGoogle Scholar
  43. 43.
    Oh SJ, Dhall R, Young A, Morgan MB, Lu L, Claussen GC. Statins may aggravate myasthenia gravis. Muscle Nerve. 2008;38(3):1101–7.PubMedGoogle Scholar
  44. 44.
    Cartwright MS, Jeffery DR, Nuss GR, Donofrio PD. Statin-associated exacerbation of myasthenia gravis. Neurology. 2004;63(11):2188.PubMedGoogle Scholar
  45. 45.
    Engel WK. Reversible ocular myasthenia gravis or mitochondrial myopathy from statins? Lancet. 2003;361(9351):85–6.PubMedGoogle Scholar
  46. 46.
    Parmar B, Francis PJ, Ragge NK. Statins, fibrates, and ocular myasthenia. Lancet. 2002;360(9334):717.PubMedGoogle Scholar
  47. 47.
    Purvin V, Kawasaki A, Smith KH, Kesler A. Statin-associated myasthenia gravis: report of 4 cases and review of the literature. Medicine (Baltimore). 2006;85(2):82–5.Google Scholar
  48. 48.
    O’Riordan J, Javed M, Doherty C, Hutchinson M. Worsening of myasthenia gravis on treatment with imipenem/cilastatin [letter]. J Neurol Neurosurg Psychiatry. 1994;57(3):383.Google Scholar
  49. 49.
    Jacobson TA. Myopathy with statin-fibrate combination therapy: clinical considerations. Nat Rev Endocrinol. 2009;5(9):507–18.PubMedGoogle Scholar
  50. 50.
    Law M, Rudnicka AR. Statin safety: a systematic review. Am J Cardiol. 2006;97(8A):52C–60.PubMedGoogle Scholar
  51. 51.
    Huynh T, Cordato D, Yang F, et al. HMG CoA reductase-inhibitor-related myopathy and the influence of drug interactions. Intern Med J. 2002;32(9–10):486–90.PubMedGoogle Scholar
  52. 52.
    Evans M, Rees A. Effects of HMG-CoA reductase inhibitors on skeletal muscle: are all statins the same? Drug Saf. 2002;25(9):649–63.PubMedGoogle Scholar
  53. 53.
    Youssef S, Stuve O, Patarroyo JC, et al. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature. 2002;420(6911):78–84.PubMedGoogle Scholar
  54. 54.
    Milani M, Ostlie N, Wang W, Conti-Fine BM. T cells and cytokines in the pathogenesis of acquired myasthenia gravis. Ann N Y Acad Sci. 2003;998:284–307.PubMedGoogle Scholar
  55. 55.
    Hargreaves IP, Heales S. Statins and myopathy. Lancet. 2002;359(9307):711–2.PubMedGoogle Scholar
  56. 56.
    Wierzbicki AS, Poston R, Ferro A. The lipid and non-lipid effects of statins. Pharmacol Ther. 2003;99(1):95–112.PubMedGoogle Scholar
  57. 57.
    Krendel DA. Hypermagnesemia and neuromuscular transmission. Semin Neurol. 1990;10:42–5.PubMedGoogle Scholar
  58. 58.
    Castlebaum AR, Donofrio PD, Walker FO, Troost BT. Laxative abuse causing hypermagnesemia quadriparesis and neuromuscular junction defect. Neurology. 1989;39:746–7.Google Scholar
  59. 59.
    Randall RE, Cohen MD, Spray CC, Rossmeise EC. Hypermagnesemia in renal failure. Ann Intern Med. 1964;61:73–88.PubMedGoogle Scholar
  60. 60.
    Collins EN, Russell P. Fatal magnesium poisoning following magnesium sulfate, glycerine and water enema in primary megacolon. Cleve Clin Q. 1949;16:162–6.PubMedGoogle Scholar
  61. 61.
    Mordes JP, Wacker WEC. Excess magnesium. Pharmacol Rev. 1978;29:273–300.Google Scholar
  62. 62.
    Flowers CJ. Magnesium in obstetrics. Am J Obstet Gynecol. 1965;91:763–76.PubMedGoogle Scholar
  63. 63.
    Lipsitz PJ. The clinical and biochemical effects of excess magnesium in the newborn. Pediatrics. 1971;47(3):501–9.PubMedGoogle Scholar
  64. 64.
    Pritchard JA. The use of magnesium sulfate in preeclampsia. J Reprod Med. 1979;23(3):107–14.PubMedGoogle Scholar
  65. 65.
    Fishman RA. Neurological aspects of magnesium metabolism. Arch Neurol. 1965;12:562–96.PubMedGoogle Scholar
  66. 66.
    Somjen G, Hilmy M, Stephen CR. Failure to anesthetize human subjects by intravenous administration of magnesium sulfate. J Pharmacol Exp Ther. 1966;154(3):652–9.PubMedGoogle Scholar
  67. 67.
    Hutter OF, Kostial K. Effect of magnesium ions upon the release of acetylcholine. J Physiol (Lond). 1953;120(4):53P.Google Scholar
  68. 68.
    Swift TR. Weakness from magnesium containing cathartics. Muscle Nerve. 1979;2:295–8.PubMedGoogle Scholar
  69. 69.
    Del Castillo J, Engback L. The nature of the neuromuscular block produced by magnesium. J Physiol (Lond). 1954;124:370–84.Google Scholar
  70. 70.
    De Silva AJC. Magnesium intoxication: an uncommon cause of prolonged curarization. Br J Anaesth. 1973;45:1228–9.PubMedGoogle Scholar
  71. 71.
    Ghoneim MM, Long JP. The interaction between magnesium and other neuromuscular blocking agents. Anesthesiology. 1970;32:23–7.PubMedGoogle Scholar
  72. 72.
    Cohen BA, London RS, Goldstein PJ. Myasthenia gravis and preeclampsia. Obstet Gynecol. 1976;48:35S–7.PubMedGoogle Scholar
  73. 73.
    George WK, Han CL. Calcium and magnesium administration in myasthenia gravis. Lancet. 1962;ii:561.Google Scholar
  74. 74.
    Gutmann L, Takamori M. Effect of Mg++ on neuromuscular transmission in the Eaton- Lambert syndrome. Neurology. 1973;23:977–80.PubMedGoogle Scholar
  75. 75.
    Strieb EW. Adverse effects of magnesium salt cathartics in a patient with the myasthenic syndrome. Ann Neurol. 1973;2:175–6.Google Scholar
  76. 76.
    Bashuk RG, Krendel DA. Myasthenia gravis presenting as weakness after magnesium administration. Muscle Nerve. 1990;13(8):708–12.PubMedGoogle Scholar
  77. 77.
    Valmaggia C, Gottlob IM. Cocaine abuse, generalized myasthenia, complete external ophthalmoplegia, and pseudotonic pupil. Strabismus. 2001;9(1):9–12.PubMedGoogle Scholar
  78. 78.
    Berciano J, Oterino A, Rebollo M, Pascual J. Myasthenia gravis unmasked by cocaine abuse [letter]. N Engl J Med. 1991;325(12):892.PubMedGoogle Scholar
  79. 79.
    Daras M, Samkoff LM, Koppel BS. Exacerbation of myasthenia gravis associated with cocaine use. Neurology. 1996;46(1):271–2.PubMedGoogle Scholar
  80. 80.
    Venkatesh S, Rao A, Gupta R. Exacerbation of myasthenia gravis with cocaine use [letter]. Muscle Nerve. 1996;19(10):1364.PubMedGoogle Scholar
  81. 81.
    Krivoshein AV, Hess GP. Mechanism-based approach to the successful prevention of cocaine inhibition of the neuronal (alpha 3 beta 4) nicotinic acetylcholine receptor. Biochemistry. 2004;43(2):481–9.PubMedGoogle Scholar
  82. 82.
    Balint G, Szobor A, Temesvari P, Zahumenszky Z, Bozsoky S. Myasthenia gravis developed under d-penicillamine treatment. Scan J Rheumatol. 1975;(Suppl 8):12–21.Google Scholar
  83. 83.
    Bucknall RC, Balint G, Dawkins RL. Myasthenia associated with D-penicillamine therapy in rheumatoid arthritis. Scand J Rheumatol Suppl. 1979;28:91–3.PubMedGoogle Scholar
  84. 84.
    Czlonskowska A. Myasthenia syndrome during penicillamine treatment. Br Med J. 1975;2:726–7.Google Scholar
  85. 85.
    Masters CL et al. Penicillamine-associated myasthenia gravis, antiacetylcholine receptor and antistriational antibodies. Am J Med. 1977;63:689–94.PubMedGoogle Scholar
  86. 86.
    Albers JW, Beals CA, Levine SP. Neuromuscular transmission in rheumatoid arthritis, with and without penicillamine treatment. Neurology. 1981;31:1562–4.PubMedGoogle Scholar
  87. 87.
    Robberecht W, Bednarik J, Bourgeois P, Van Hees J, Carton H. Myasthenic syndrome caused by direct effect of chloroquine on neuromuscular junction. Arch Neurol. 1989;46:464–8.PubMedGoogle Scholar
  88. 88.
    Perez A, Perella M, Pastor E, Cano M, Escudero J. Myasthenia gravis induced by alpha-interferon therapy. Am J Hematol. 1995;49(4):365–6.PubMedGoogle Scholar
  89. 89.
    Batocchi AP, Evoli A, Servidei S, Palmisani MT, Apollo F, Tonali P. Myasthenia gravis during interferon alpha therapy. Neurology. 1995;45(2):382–3.PubMedGoogle Scholar
  90. 90.
    Piccolo G, Franciotta D, Versino M, Alfonsi E, Lombardi M, Poma G. Myasthenia gravis in a patient with chronic active hepatitis C during interferon-alpha treatment [letter]. J Neurol Neurosurg Psychiatry. 1996;60(3):348.PubMedGoogle Scholar
  91. 91.
    Mase G, Zorzon M, Biasutti E, et al. Development of myasthenia gravis during interferon-alpha treatment for anti-HCV positive chronic hepatitis [letter]. J Neurol Neurosurg Psychiatry. 1996;60(3):348–9.PubMedGoogle Scholar
  92. 92.
    Konishi T. [A case of myasthenia gravis which developed myasthenic crisis after alpha-interferon therapy for chronic hepatitis C]. [Review] [14 refs] [Japanese]. Rinsho Shinkeigaku – Clin Neur. 1996;36(8):980–5.Google Scholar
  93. 93.
    Gu D, Wogensen L, Calcutt N, et al. Myasthenia gravis-like syndrome induced by expression of interferon in the neuromuscular junction. J Exp Med. 1995;18(2):547–57.Google Scholar
  94. 94.
    Erbguth F, Claus D, Engelhardt A, Dressler D. Systemic effect of local botulinum toxin injections unmasks subclinical Lambert-Eaton myasthenic syndrome. J Neurol Neurosurg Psychiatry. 1993;56:1235–6.PubMedGoogle Scholar
  95. 95.
    Dressler D. Subclinical myasthenia gravis causing increased sensitivity to botulinum toxin therapy. J Neural Transm. 2010;117(11):1293–4.PubMedGoogle Scholar
  96. 96.
    Borodic G. Myasthenic crisis after botulinum toxin. Lancet. 1998;352:1832.PubMedGoogle Scholar
  97. 97.
    Emmerson J. Botulinum toxin for spasmodic torticollis in a patient with myasthenia gravis. Mov Disord. 1994;9:367.PubMedGoogle Scholar
  98. 98.
    Tarsy D, Bhattacharyya N, Borodic G. Myasthenia gravis after botulinum toxin A for Meige syndrome. Mov Disord. 2000;15(4):736–8.PubMedGoogle Scholar
  99. 99.
    Martinez-Matos JA, Gascon J, Calopa M, Montero J. Myasthenia gravis unmasked by botulinum toxin. Neurologia. 2003;18:234–5.PubMedGoogle Scholar
  100. 100.
    Fasano A, Bentivoglio AR, Ialongo T, Soleti F, Evoli A. Treatment with botulinum toxin in a patient with myasthenia gravis and cervical dystonia. Neurology. 2005;64(12):2155–6.PubMedGoogle Scholar
  101. 101.
    Cherington M. Clinical spectrum of botulism. Muscle Nerve. 1998;21(6):701–10.PubMedGoogle Scholar
  102. 102.
    Pickett J, Berg B, Chaplin E, Brunstetter-Shafer M. Syndrome of botulism in infancy: clinical and electrophysiologic study. N Engl J Med. 1976;295:770–92.PubMedGoogle Scholar
  103. 103.
    MacDonald KL, Rutherford SM, Friedman SM, et al. Botulism and botulism-like illness in chronic drug users. Ann Intern Med. 1985;102:616–8.PubMedGoogle Scholar
  104. 104.
    Chia J, Clark JB, Ryan CA, Pollack M. Botulism in an adult associated with food-borne intestinal infection with Clostridium botulinum. N Engl J Med. 1986;315:239–41.PubMedGoogle Scholar
  105. 105.
    Dowell VR, McCroskey LM, Hatheway CL, Lombard GL, Hughes JM, Merson MH. Coproexamination for botulinal toxin and clostridium botulinum. A new procedure for laboratory diagnosis of botulism. JAMA. 1977;238:1829–32.PubMedGoogle Scholar
  106. 106.
    McCroskey LM, Hatheway CL, Woodruff BA, Greenberg JA, Jurgenson P. Type F botulism due to neurotoxigenic Clostridium baratii from an unknown source in an adult. J Clin Microbiol. 1991;29:2618–20.PubMedGoogle Scholar
  107. 107.
    Griffin PM, Hatheway CL, Rosenbaum RB, Sokolow R. Endogenous antibody production to botulinum toxin in an adult with intestinal colonization botulism and underlying Crohn’s disease. J Infect Dis. 1997;175:633–7.PubMedGoogle Scholar
  108. 108.
    Maretic Z, Maretic Z, Maretic Z. Venoms of Theridiidae, genus Latrodectus. B. Epidemiology of envenomation, symptomatology, pathology and treatment. In: Bettini S, editor. Arthropod venoms. Handbuch der Experimentalellen Pharmakologie. Berlin: Springer; 1978. p. 185–212.Google Scholar
  109. 109.
    Rosenthal L. Alpha-latrotoxin and related toxins. Pharmacol Ther. 1989;42:115–34.PubMedGoogle Scholar
  110. 110.
    Hurlbut WP, Iezzi N, Fesce R, Ceccarelli B. Correlation between quantal secretion and vesicle loss at the frog neuromuscular junction. J Physiol (Lond). 1990;424:501–26.Google Scholar
  111. 111.
    Henkel AW, Sankaranarayanan S. Mechanisms of α-latrotoxin action. Cell Tissue Res. 1999;296:229–33.PubMedGoogle Scholar
  112. 112.
    Ushkaryov YA, Petrenko AG, Geppert M, Sudhof TC. Neurexins: synaptic cell surface proteins related to the α-latrotoxin receptor and laminin. Science. 1992;257:50–6.PubMedGoogle Scholar
  113. 113.
    Longenecker HE, Hurlbut WP, Mauro A, Clark AW. Effects of black widow spider venom on the frog neuromuscular junction. Effects on end-plate potential, miniature end-plate potential and nerve terminal spike. Nature. 1970;225:701–3.PubMedGoogle Scholar
  114. 114.
    Clark AW, Hurlbut WP, Mauro A. Changes in the fine structure of the neuromuscular junction of the frog caused by black widow spider venom. J Cell Biol. 1972;52(1):1–14.PubMedGoogle Scholar
  115. 115.
    Clark AW, Mauro A, Longenecker HE, Hurlbut WP. Effects of black widow spider venom on the frog neuromuscular junction. Effects on the fine structure of the frog neuromuscular junction. Nature. 1970;225:703–5.PubMedGoogle Scholar
  116. 116.
    Ceccarelli B, Grohovaz F, Hurlbut WP. Freeze-fracture studies of frog neuromuscular junctions during intense release of neurotransmitter. I. Effects of black widow spider venom and Ca2+−free solutions on the structure of the active zone. J Cell Biol. 1979;81(1):163–77.PubMedGoogle Scholar
  117. 117.
    Pumplin DW, Reese TS. Action of brown widow spider venom and botulinum toxin on the frog neuromuscular junction examined with the freeze-fracture technique. J Physiol (Lond). 1977;273(2):443–57.Google Scholar
  118. 118.
    Gorio A, Rubin LL, Mauro A. Double mode of action of black widow spider venom on frog neuromuscular junction. J Neurocytol. 1978;7(2):193–202.PubMedGoogle Scholar
  119. 119.
    Howard BD. Effects and mechanisms of polypeptide neurotoxins that act presynaptically. Annu Rev Pharmacol Toxicol. 1980;20:307–36.PubMedGoogle Scholar
  120. 120.
    Gilbert WW, Stewart CM. Effective treatment of arachiodism by calcium salts. Am J Med Sci. 1935;189:532–6.Google Scholar
  121. 121.
    Miller TA. Bite of the black widow spider. Am Fam Physician. 1992;45:181–7.PubMedGoogle Scholar
  122. 122.
    D’Amour EF, Becker FE, Van Riper W. The black widow spider. Q Rev Med. 1936;11:123–*.Google Scholar
  123. 123.
    Temple IU. Acute ascending paralysis, or tick paralysis. Med Sentinel. 1912;20:507–14.Google Scholar
  124. 124.
    Todd JL. Tick bite in British Columbia. CMAJ. 1912;2:1118–9.Google Scholar
  125. 125.
    Cleland JB. Injuries and diseases of man in Australia attributable to animals (except insects). Australas Med Gaz. 1912;32:295–9.Google Scholar
  126. 126.
    Gregson JD. Tick paralysis – an appraisal of natural and experimental data. Ottawa: Canada Department of Agriculture; 1973. p. 1–109.Google Scholar
  127. 127.
    Edlow JA. Tick paralysis. Curr Treat Options Neurol. 2010;12(3):167–77.PubMedGoogle Scholar
  128. 128.
    Gothe R, Kunze K, Hoogstraal H. The mechanisms of pathogenicity in the tick paralyses. J Med Entomol. 1979;16(5):357–69.PubMedGoogle Scholar
  129. 129.
    Anonymous. Tick paralysis – Washington, 1995. From the Centers for Disease Control and Prevention. JAMA. 1996;275(19):1470.Google Scholar
  130. 130.
    Weingart JL. Tick paralysis. Minn Med. 1967;50(3):383–6.PubMedGoogle Scholar
  131. 131.
    Brown AF, Hamilton DL. Tick bite anaphylaxis in Australia. J Accid Emerg Med. 1998;15(2):111–3.PubMedGoogle Scholar
  132. 132.
    Felz MW, Smith CD, Swift TR. A six-year-old girl with tick paralysis [see comments]. N Engl J Med. 2000;342(2):90–4.PubMedGoogle Scholar
  133. 133.
    Cherington M, Snyder RD. Tick paralysis: neurophysiological studies. N Engl J Med. 1968;278:95–7.PubMedGoogle Scholar
  134. 134.
    Swift TR, Ignacio OJ. Tick paralysis: electrophysiologic studies. Neurology. 1975;25(12):1130–3.PubMedGoogle Scholar
  135. 135.
    Grattan-Smith PJ, Morris JG, Johnston HM, et al. Clinical and neurophysiological features of tick paralysis. Brain. 1997;120(Pt 11):1975–87.PubMedGoogle Scholar
  136. 136.
    Donat JR, Donat JF. Tick paralysis with persistent weakness and electromyographic abnormalities. Arch Neurol. 1981;38(1):59–61.PubMedGoogle Scholar
  137. 137.
    Lagos JC, Thies RE. Tick paralysis without muscle weakness. Arch Neurol. 1969;21(5):471–4.PubMedGoogle Scholar
  138. 138.
    Rose I. A review of tick paralysis. Can Med Assoc J. 1954;70:175–6.PubMedGoogle Scholar
  139. 139.
    Dworkin MS, Shoemaker PC, Anderson DE. Tick paralysis: 33 human cases in Washington State, 1946–1996. Clin Infect Dis. 1999;29(6):1435–9.PubMedGoogle Scholar
  140. 140.
    Jones Jr HR. Guillain-Barre syndrome: perspectives with infants and children. Semin Pediatr Neurol. 2000;7(2):91–102.PubMedGoogle Scholar
  141. 141.
    Stanbury JB, Huyck JH. Tick paralysis: critical review. Medicine. 1945;24:219–42.Google Scholar
  142. 142.
    Stone BF, Aylward JH. Holocyclotoxin – the paralysing toxin of the Australian paralysis tick Ixodes holocyclus; chemical and immunological characterization. Toxicon. 1992;30:552–3.Google Scholar
  143. 143.
    Rose I, Gregson JD. Evidence of neuromuscular block in tick paralysis. Nature. 1959;178:95–6.Google Scholar
  144. 144.
    Gothe R, Neitz AWH. Tick paralyses: pathogenesis and etiology. Adv Dis Vector Res. 1991;8:177–*.Google Scholar
  145. 145.
    Stone BF. Tick paralysis, particularly involving Ixodes holocyclus and other Ixodes species. Adv Dis Vector Res. 1988;5:61–*.Google Scholar
  146. 146.
    Esplin DW, Phillip CB, Hughes LE. Impairment of muscle stretch reflexes in tick paralysis. Science. 1960;132:958–9.PubMedGoogle Scholar
  147. 147.
    DeBusk FL, O’Connor S. Tick toxicosis. Pediatrics. 1972;50:328–9.PubMedGoogle Scholar
  148. 148.
    Haller JS, Fabara JA. Tick paralysis. Case report with emphasis on neurological toxicity. Am J Dis Child. 1972;124(6):915–7.PubMedGoogle Scholar
  149. 149.
    Warnick JE, Albuquerque EX, Diniz CR. Electrophysiological observations on the action of the purified scorpion venom, Tityus-toxin, on nerve and skeletal muscle of the rat. J Pharmacol Exp Ther. 1976;198:155–67.PubMedGoogle Scholar
  150. 150.
    Sofer S, Shahak E, Gueron M. Scorpion envenomation and antivenom therapy. Pediatrics. 1994;124:973–*.Google Scholar
  151. 151.
    Belghith M, Boussarsar M, Haguiga H, et al. Efficacy of ­serotherapy in scorpion sting: a matched-pair study. J Toxicol Clin Toxicol. 1999;37:51–7.PubMedGoogle Scholar
  152. 152.
    Campbell CH. The effects of snake venoms and their neurotoxins on the nervous system of man and animals. Contemp Neurol Ser. 1975;12:259–93.PubMedGoogle Scholar
  153. 153.
    Vital-Brazil O. Venoms: their inhibitory action on neuromuscular transmission. In: Cheymol J, editor. Neuromuscular blocking and stimulating agents. New York: Permagon Press; 1972. p. 145–67.Google Scholar
  154. 154.
    Lee CY. Elapid neurotoxins and their mode of action. Clin Toxicol. 1970;3:457–72.PubMedGoogle Scholar
  155. 155.
    Karlsson E, Arnberg H, Eaker D. Isolation of the principal neurotoxin of tow Naja naja subspecies. Eur J Biochem. 1971;21:1–16.PubMedGoogle Scholar
  156. 156.
    Lee CY, Chang SL, Kau ST, Luh SH. Chromatographic separation of the venom of Bungarus multicinctus and characteristics of its components. J Chromatogr. 1972;72:71–82.PubMedGoogle Scholar
  157. 157.
    Barme M. Venomous sea snakes of Vietnam and their venoms. In: Keegan HL, MacFarlane W, editors. Venomous and poisonous animals and noxious plants of he Pacific region. Oxford: Pergamon Press; 1963. p. 373–78.Google Scholar
  158. 158.
    Tu AT, Tu T. Sea snakes from southeast Asia and Far East and their venoms. In: Halstead BW, editor. Poisonous and venomous marine animals of the world. Washington, DC: US Government Printing Office; 1970. p. 885–903.Google Scholar
  159. 159.
    Karlsson E. Chemistry of protein toxins in snake venoms. In: Lee CY, editor. Snake venoms. New York: Springer; 1979. p. 159–212.Google Scholar
  160. 160.
    Tamiya N, Yagi T. Studies on sea snake venom. Proc Jpn Acad Ser B Phys Biol Sci. 2011;87(3):41–52.PubMedGoogle Scholar
  161. 161.
    Chang CC, Su MJ. Mutual potentiation a nerve terminals, between toxins from snake venoms that contain phospholipase A activity: β−bungarotoxin, crotoxin, taipoxin. Toxicon. 1980;18:641–8.PubMedGoogle Scholar
  162. 162.
    Kellaway CH. The peripheral action of the Australian snake venoms. 2. The curari-like action in mammals. Aust J Exp Biol Med Sci. 1932;10:181–94.Google Scholar
  163. 163.
    Rowlands JB, Mastaglia FL, Kakulas BA, Hainsworth D. Clinical and pathological aspects of a fatal case of mulga (Pseudechis australis) snakebite. Med J Aust. 1969;1:226–30.PubMedGoogle Scholar
  164. 164.
    Bouquier JJ, Guibert J, Dupont C, Umdenstock R. Les piqures de vipere chez l’enfant. Arch Fr Pediatr. 1974;31:285–96.PubMedGoogle Scholar
  165. 165.
    Mitrakul C, Dhamkrong-At A, Futrakul P, et al. Clinical features of neurotoxic snake bite and response to antivenom in 47 children. Am J Trop Med Hyg. 1984;33:1258–66.PubMedGoogle Scholar
  166. 166.
    Reid HA. Cobra-bites. Br Med J. 1964;2:540–5.PubMedGoogle Scholar
  167. 167.
    Warrell DA, Barnes HJ, Piburn MF. Neurotoxic effects of bites by the Egyptian cobra (Naja haje) in Nigeria. Trans R Soc Trop Med Hyg. 1976;70:78–9.PubMedGoogle Scholar
  168. 168.
    Kerrigan KR. Venomous snake bites in Eastern Ecuador. Am J Trop Med Hyg. 1991;44:93–9.PubMedGoogle Scholar
  169. 169.
    Ouyang C, Teng C-M, Huang T-F. Characterization of snake venom components acting on blood coagulation and platelet function. Toxicon. 1992;30:945–66.PubMedGoogle Scholar
  170. 170.
    Reid HA. Antivenom in sea-snake bite poisoning. Lancet. 1975;i:622–23.Google Scholar
  171. 171.
    Theakston RDG, Phillips RE, Warrell DA, et al. Envenoming by the common krait (Bungarus caeruleus) and Sri Lankan cobra (Naja naja naja): efficacy and complications with Haffkine antivenom. Trans R Soc Trop Med Hyg. 1990;84:301–8.PubMedGoogle Scholar
  172. 172.
    Lavonas EJ, Schaeffer TH, Kokko J, Mlynarchek SL, Bogdan GM. Crotaline Fab antivenom appears to be effective in cases of severe North American pit viper envenomation: an integrative review. BMC Emerg Med. 2009;9:13.PubMedGoogle Scholar
  173. 173.
    Kumar S, Usgaonkar RS. Myasthenia gravis like picture resulting from snake bite. J Indian Med Assoc. 1968;50:428–9.PubMedGoogle Scholar
  174. 174.
    Pettigrew LC, Glass JP. Neurologic complications of coral snake bite. Neurology. 1985;35:589–92.PubMedGoogle Scholar
  175. 175.
    Southcott RV. The neurologic effects of noxious marine creatures. In: Hornabrook RW, editor. Topics on tropical neurology. Philadelphia: F.A. Davis Company; 1975. p. 165–258.Google Scholar
  176. 176.
    Steidinger KA, Steinfield HJ. Toxic marine dinoflagellates. In: Spector DL, editor. Dinoflagellates. New York: Academic; 1984. p. 201–6.Google Scholar
  177. 177.
    Tsai MC, Chou HN, Chen ML. Effect of brevetoxin-B on the neuromuscular transmission of the mouse diaphragm. J Formos Med Assoc. 1991;90(5):431–6.PubMedGoogle Scholar
  178. 178.
    Baden DG, Bikhazi G, Decker SJ, Foldes FF, Leung I. Neuromuscular blocking action of two brevetoxins from the Florida red tide organism Ptychodiscus brevis. Toxicon. 1984;22(1):75–84.PubMedGoogle Scholar
  179. 179.
    Hellyer SD, Selwood AI, Rhodes L, Kerr DS. Marine algal pinnatoxins E and F cause neuromuscular block in an in vitro hemidiaphragm preparation. Toxicon. 2011;58(8):693–9.PubMedGoogle Scholar
  180. 180.
    Stewart I, Lewis RJ, Eaglesham GK, Graham GC, Poole S, Craig SB. Emerging tropical diseases in Australia. Part 2. Ciguatera fish poisoning. Ann Trop Med Parasitol. 2010;104(7):557–71.PubMedGoogle Scholar
  181. 181.
    Skinner MP, Brewer TD, Johnstone R, Fleming LE, Lewis RJ. Ciguatera fish poisoning in the Pacific Islands (1998 to 2008). PLoS Negl Trop Dis. 2011;5(12):e1416.PubMedGoogle Scholar
  182. 182.
    Olivera BM, Gray WR, Zeikus R, et al. Peptide neurotoxins from fish-hunting cone snails. Science. 1985;230:1338–43.PubMedGoogle Scholar
  183. 183.
    Kohn AJ. Recent cases of human injury due to venomous marine snails of the genus Conus. Hawaii Med J. 1958;17:528–*.PubMedGoogle Scholar
  184. 184.
    Kohn AJ. Venomous marine snails of the genus Conus. In: Keegan HC, McFarlane WV, editors. Venomous and poisonous animals and noxious plants of the pacific region. Oxford: Permagon Press; 1963. p. 1–456.Google Scholar
  185. 185.
    Cruz LJ, White J. Clinical toxicology of Conus snail stings. In: Meier J, White J, editors. CRC handbook on clinical toxicology of animal venoms and poisons. Boca Raton: CRC Press; 1995.Google Scholar
  186. 186.
    Gray WR, Luque A, Olivera BM, Barrett J, Cruz LJ. Peptide toxins from Conus geographus venom. J Biol Chem. 1981;256:4734–40.PubMedGoogle Scholar
  187. 187.
    Hopkins C, Grilley M, Miller C, et al. A new family of Conus peptides targeted to the nicotinic acetylcholine receptor. J Biol Chem. 1995;270:22361–7.PubMedGoogle Scholar
  188. 188.
    McIntosh M, Cruz LJ, Hunkapiller MW, Gray WR, Olivera BM. Isolation and structure of a peptide toxin from the marine snail Conus magnus. Arch Biochem Biophys. 1982;218:329–34.PubMedGoogle Scholar
  189. 189.
    McCleskey EW, Fox AP, Feldman D, et al. Calcium channel blockade by a peptide from Conus: Specificity and mechanism. Proc Natl Acad Sci USA. 1987;84:4327–31.PubMedGoogle Scholar
  190. 190.
    Adams DJ, Alewood PF, Craik DJ, Drinkwater RD, Lewis RJ. Conotoxins and their potential pharmaceutical applications. Drug Dev Res. 1999;46(3–4):219–34.Google Scholar
  191. 191.
    Yoshiba S. [An estimation of the most dangerous species of cone shell, Conus (Gastridium) geographus Linne, 1758, venom’s lethal dose in humans]. Japanese J Hyg. 1984;39:565–72.Google Scholar
  192. 192.
    Halstead BW. Poisonous and venomous marine animals of the world. Washington, DC: US Government Printing Office; 1970.Google Scholar
  193. 193.
    Nimorakiotakis B, Winkel KD. Marine envenomations. Part 2 – other marine envenomations. Aust Fam Physician. 2003;32(12):975–9.PubMedGoogle Scholar
  194. 194.
    Gwee MC, Gopalakrishnakone P, Yuen R, Khoo HE, Low KS. A review of stonefish venoms and toxins. Pharmacol Ther. 1994;64:509–28.PubMedGoogle Scholar
  195. 195.
    Kreger AS, Molgo J, Comella JX, Hansson B, Thesleff S. Effects of stonefish (Synanceia trachynis) venom on murine and frog neuromuscular junctions. Toxicon. 1993;31:307–17.PubMedGoogle Scholar
  196. 196.
    Hardin JW, Arena JW. Human poisoning from native and cultivated plants. 1st ed. Durham: Duke University Press; 1974.Google Scholar
  197. 197.
    Davies M, Davies TA. Hemlock: murder before the lord. Med Sci Law. 1994;34:331–3.PubMedGoogle Scholar
  198. 198.
    Panter KE, Keeler RF. Piperidine alkaloids of poison hemlock (Conium maculatum). In: Cheeke P, editor. Toxicants of plant ­origin, Alkaloids, vol. 1. Boca Raton: CRC Press; 1989.Google Scholar
  199. 199.
    Green BT, Lee ST, Panter KE, et al. Actions of piperidine alkaloid teratogens at fetal nicotinic acetylcholine receptors. Neurotoxicol Teratol. 2010;32(3):383–90.PubMedGoogle Scholar
  200. 200.
    Silinsky EM. On the role of barium in supporting the asynchronous release of acetylcholine quanta by motor nerve impulses. J Physiol Lond. 1978;274:157–71.PubMedGoogle Scholar
  201. 201.
    Silinsky EM. Can barium support the release of acetylcholine by nerve impulses? Br J Pharmacol. 1977;59:215–7.PubMedGoogle Scholar
  202. 202.
    Metral S, Bonneton C, Hort-Legrand C, Reynes J. Dual action of erbium on transmitter release at the from neuromuscular synapse. Nature. 1978;271:773–5.PubMedGoogle Scholar
  203. 203.
    Cooper GP, Manalis RS. Cadmium: effects on transmitter release a the frog neuromuscular junction. Eur J Pharmacol. 1984;99:251–6.PubMedGoogle Scholar
  204. 204.
    Forshaw PJ. The inhibitory effect of cadmium on neuromuscular transmission in the rat. Eur J Pharmacol. 1977;42:371–7.PubMedGoogle Scholar
  205. 205.
    Weakly JN. The action of cobalt ions on neuromuscular transmission in the frog. J Physiol Lond. 1973;234:597–612.PubMedGoogle Scholar
  206. 206.
    Molgo J, del Pozo E, Banos JE, Angaut-Petit D. Changes in quantal transmitter release caused by gadolinium ions at the frog neuromuscular junction. Br J Pharmacol. 1991;104:133–8.PubMedGoogle Scholar
  207. 207.
    Kajimoto N, Kirpekar SM. Effects of manganese and lanthanum on spontaneous release of acetylcholine at frog motor nerve terminals. Nature. 1972;235:29–30.Google Scholar
  208. 208.
    Balnave RJ, Gage PW. The inhibitory effect of manganese on transmitter release at the neuromuscular junction of the toad. Br J Pharmacol. 1973;47:339–52.PubMedGoogle Scholar
  209. 209.
    Kita H, Van der Kloot W. Action of Co and Ni at the frog neuromuscular junction. Nature. 1973;245:52–3.Google Scholar
  210. 210.
    Alnaes E, Rahaminoff R. Dual action of praseodymium (Pr3+) on transmitter release at the frog neuromuscular synapse. Nature. 1975;247:478–9.Google Scholar
  211. 211.
    Allen JE, Gage PW, Leaver DD, Leow ACT. Triethyltin decreases evoked transmitter release at the mouse neuromuscular junction. Chem Biol Interact. 1980;31:227–31.PubMedGoogle Scholar
  212. 212.
    Benoit PR, Mambrini J. Modification of transmitter release by ions which prolong the presynaptic action potential. J Physiol Lond. 1970;210:681–95.PubMedGoogle Scholar
  213. 213.
    Cooper GP, Manalis RS. Influence of heavy metals on synaptic transmission. Neurotoxicology. 2001;4:69–84.Google Scholar
  214. 214.
    Rustam H, Hamdi T. Methylmercury poisoning n Iraq; a neurological study. Brain. 1974;97:499–510.Google Scholar
  215. 215.
    Bakir F, Damluji SF, Amin-Saki L, et al. Methylmercury poisoning in Iraq. Science. 1973;181:230–41.PubMedGoogle Scholar
  216. 216.
    Igata A. Neurological aspects of methylmercury poisoning in Minamata. In: Tsubaki T, Takahashi H, editors. Recent advances in Minamata disease studies. Tokyo: Kodansha; 1986. p. 41–57.Google Scholar
  217. 217.
    LeQuense P, Damluji SF, Berlin M. Electrophysiological studies of peripheral nerves in patients with organic mercury poisoning. J Neurol Neurosurg Psychiatry. 1974;37:333–9.Google Scholar
  218. 218.
    Rustam H, von Burg R, Amin-Saki L, Elhassani S. Evidence of a neuromuscular disorder in methylmercury poisoning. Arch Environ Health. 1975;30:190–5.PubMedGoogle Scholar
  219. 219.
    Atchinson WD, Narahashi T. Methylmercury induced depression of neuromuscular transmission in the rat. Neurotoxicology. 1982;3:37–50.Google Scholar
  220. 220.
    Fraser TR. On the physiological action of the Calabar bean. J Anat Physiol. 1867;1(2):323–32.PubMedGoogle Scholar
  221. 221.
    Posner A. Notes on the early history of the Calabar bean. Eye Ear Nose Throat Mon. 1962;41:929–31.PubMedGoogle Scholar
  222. 222.
    Taylor P. Anticholinesterase agents. In: Gilman AG, Goodman LS, Rall TW, Murad F, editors. The pharmacological basis of therapeutics. 7th ed. New York: Macmillan; 1985. p. 110–29.Google Scholar
  223. 223.
    Edmundson RS. Dictionary of organphosphorous compounds [electronic resource]. London: Chapman and Hall; 1988.Google Scholar
  224. 224.
    Gunderson CH, Lehmann CR, Sidell FR, Jabari B. Nerve effects: a review. Neurology. 1992;42:946–50.PubMedGoogle Scholar
  225. 225.
    Fernando R. Pesticides in Sri Lanka. Colombo: Friedrich-Ebert-Stiftung; 1989.Google Scholar
  226. 226.
    Besser R, Gutmann L, Dilimann U, Weilemann LS, Hopf HC. End plate dysfunction in acute organophosphate intoxication. Neurology. 1989;39:561–7.PubMedGoogle Scholar
  227. 227.
    Gutmann L, Besser R. Organophosphate intoxication: pharmacologic, neurophysiologic, clinical, and therapeutic considerations. Semin Neurol. 1990;10:46–51.PubMedGoogle Scholar
  228. 228.
    Jeyaratnam J. Acute pesticide poisoning: a major health problem. World Health Stat Q. 1990;43:139–45.PubMedGoogle Scholar
  229. 229.
    Kinyanda E, Wamala D, Musisi S, Hjelmeland H. Suicide in urban Kampala, Uganda: a preliminary exploration. Afr Health Sci. 2011;11(2):219–27.PubMedGoogle Scholar
  230. 230.
    Aldridge WN, Reiner E. Enzyme inhibitors as substrates. Amsterdam: North-Holland Publishing Co.; 1972.Google Scholar
  231. 231.
    Marrs TC. Organophosphate poisoning. Pharmacol Ther. 1993;58:51–66.PubMedGoogle Scholar
  232. 232.
    Namba T, Nolte CT, Jackrel J, Grob D. Poisoning due to organophosphorous insecticides. Am J Med. 2001;50:475–92.Google Scholar
  233. 233.
    Karalliedde L, Senanayake N. Organophosphorous insecticide poisoning. Br J Anaesth. 1989;63:736–50.PubMedGoogle Scholar
  234. 234.
    De Wilde V, Vogblaers D, Colarddyn F, et al. Postsynaptic neuromuscular dysfunction in organophosphate induced intermediate syndrome. Klin Wochenschr. 1991;69:177–83.PubMedGoogle Scholar
  235. 235.
    Good JL, Khurana RK, Mayer RF, Cintra WM, Albuquerque EX. Pathophysiological studies of neuromuscular function in subacute organophosphate poisoning induced by phosmet. J Neurol Neurosurg Psychiatry. 1993;56:290–4.PubMedGoogle Scholar
  236. 236.
    Waseem M, Perry C, Bomann S, Pai M, Gernsheimer J. Cholinergic crisis after rodenticide poisoning. West J Emerg Med. 2010;11(5):524–7.PubMedGoogle Scholar
  237. 237.
    Maselli RA, Soliven BC. Analysis of the organophosphate-induced electromyographic response to repetitive nerve stimulation: Paradoxical response to edrophonium and D-tubocurarine. Muscle Nerve. 1991;14:1182–8.PubMedGoogle Scholar
  238. 238.
    Tsao TC, Juang Y, Lan R, Shieh W, Lee C. Respiratory failure of acute organophosphate and carbamate poisoning. Chest. 1990;98:631–6.PubMedGoogle Scholar
  239. 239.
    WHO. Public health impact of pesticides used in agriculture. Geneva: World Heath Organization; 1990. p. 1–128.Google Scholar
  240. 240.
    Haddad LM. Organophosphate poisoning – intermediate syndrome. J Toxicol Clin Toxicol. 1992;30:331–2.Google Scholar
  241. 241.
    De Bleecker J, Willems J, Van Den Neucker K, De Reuck J, Vogelaers D. Prolonged toxicity with intermediate syndrome after combined parathion and methyl parathion poisoning. Clin Toxicol. 1992;30(3):333–45.Google Scholar
  242. 242.
    Güler K, Tasçioglu C, Özbey N. Organophosphate poisoning. Isr J Med Sci. 1996;32(9):791–2.PubMedGoogle Scholar
  243. 243.
    Chaudhry R, Lall SB, Mishra B, Dhawan B. Lesson of the week – a foodborne outbreak of organophosphate poisoning. Br Med J. 1998;317(7153):268–9.Google Scholar
  244. 244.
    Cranmer MF. Carbaryl. A toxicological review and risk analysis. Neurotoxicology. 1986;7:247–328.PubMedGoogle Scholar
  245. 245.
    Goldman LR, Smith DF, Neutra RR, et al. Pesticide food poisoning from contaminated watermelons in California. Arch Environ Health. 1990;45:229–36.PubMedGoogle Scholar
  246. 246.
    Freslew KE, Hagardorn AN, McCormick WF. Poisoning from oral ingestion of carbofuran (Furandan 4 F), a cholinesterase-inhibiting carbamate insecticide, and its effects on cholinesterase activity in various biological fluids. J Forensic Sci. 1992;37:337–44.Google Scholar
  247. 247.
    Jenis EH, Payne RJ, Goldbaum LR. Acute meprobamate poisoning: a fatal case following a lucid interval. J Am Med Assoc. 1969;207:361–2.Google Scholar
  248. 248.
    Klys M, Kosún J, Pach J, Kamenczak A. Carbofuran poisoning of pregnant women and fetus per ingestion. J Forensic Sci. 1989;34:1413–6.PubMedGoogle Scholar
  249. 249.
    Maddock RK, Bloomer HA. Meprobamate overdosage. Evaluation of its severity and methods of treatment. J Am Med Assoc. 1967;201:123–7.Google Scholar
  250. 250.
    Ecobichon DJ. Carbamates. In: Spencer PS, Schaumburg HH, editors. Experimental and clinical neurotoxicology. 2nd ed. New York: Oxford University Press; 2000. p. 289–98.Google Scholar
  251. 251.
    Maynard RL. Toxicology of chemical warfare agents. In: Ballantyne B, Marrs T, Turner T, editors. General and applied toxicology. New York: Stockton; 1993. p. 1253.Google Scholar
  252. 252.
    Spencer PS, Wilson BW, Albuquerque EX. Sarin, other “nerve agents” and their antidotes. In: Spencer PS, Schaumburg HH, ­editors. Experimental and clinical neurotoxicology. 2nd ed. New York: Oxford University Press; 2000. p. 1073–93.Google Scholar
  253. 253.
    Meselson M, Perry Robinson J. Chemical warfare and disarmament. Sci Am. 1980;242(4):38–47.Google Scholar
  254. 254.
    Nozaki H, Aikawa N, Fujishima S, et al. A case of VX poisoning and the difference from sarin. Lancet. 1995;346:698–9.PubMedGoogle Scholar
  255. 255.
    Nozaki H, Aikawa N, Shinozawa Y, et al. Sarin poisoning in Tokyo subway. Lancet. 1995;345:980–1.PubMedGoogle Scholar
  256. 256.
    Morita H, Yanagisawa N, Nakajima T, et al. Sarin poisoning in Matsumoto. Jpn Lancet. 1995;346:290–3.Google Scholar
  257. 257.
    Nakajima T, Saro S, Morita H, Yanagisawa N. Sarin poisoning of a rescue team in the Matsumoto sarin incident in Japan. Occup Environ Med. 1997;54:697–701.PubMedGoogle Scholar
  258. 258.
    Woodall J. Tokyo subway gas attack. Lancet. 1997;350:296.PubMedGoogle Scholar
  259. 259.
    Pohanka M. Cholinesterases, a target of pharmacology and toxicology. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2011;155(3):219–29.PubMedGoogle Scholar
  260. 260.
    Dunn MA, Hackley BE, Sidell FR. Pretreatment for nerve agent exposure. In: Sidell FR, Takafuji ET, Franz DR, editors. Textbook of military medicine: medical aspects of chemical and biological warfare. Washington, DC: TMM Publications, Borden Institute, Walter Reed Army Medical Center; 1997. p. 181–96.Google Scholar
  261. 261.
    Dawson RM. Review of oximes available for treatment of nerve agent poisoning. J Appl Toxicol. 1994;14:317–31.PubMedGoogle Scholar
  262. 262.
    Kassa J, Musilek K, Karasova JZ, Kuca K, Bajgar J. Two possibilities how to increase the efficacy of antidotal treatment of nerve agent poisonings. Mini Rev Med Chem. 2012;12(1):24–34.PubMedGoogle Scholar
  263. 263.
    Worek F, Szinicz L, Eyer P, Thiermann H. Evaluation of oxime efficacy in nerve agent poisoning: development of a kinetic-based dynamic model. Toxicol Appl Pharmacol. 2005;209(3):193–202.PubMedGoogle Scholar
  264. 264.
    Holstege CP, Kirk M, Sidell FR. Chemical warfare. Nerve agent poisoning. Crit Care Med. 1997;13:923–42.Google Scholar
  265. 265.
    Anderson PD. Emergency management of chemical weapons injuries. J Pharm Pract. 2012;25(1):61–8.PubMedGoogle Scholar
  266. 266.
    Becker G, Kawan A, Szinicz L. Direct reaction of oximes with sarin, soman or tabun in vitro. Arch Toxicol. 1997;71:714–8.PubMedGoogle Scholar
  267. 267.
    Ecobichon DJ. Carbamic acid ester insecticides. In: Ecobichon DJ, Joy RM, editors. Pesticides and neurological disease. 2nd ed. Boca Raton: CRC Press; 1994. p. 251–89.Google Scholar
  268. 268.
    Rotenberg M, Shefi M, Dany S, Dore I, Tirosh M, Almog S. Differentiation between organophosphate and carbamate poisoning. Clin Chim Acta. 1995;234:11–21.PubMedGoogle Scholar
  269. 269.
    Besser R, Vogt T, Gutmann L. High pancuronium sensitivity of axonal nicotinic-acetylcholine receptors in humans during organophosphate intoxication. Muscle Nerve. 1991;14:1197–201.PubMedGoogle Scholar
  270. 270.
    Miller SA, Blick DW, Kerenyi SZ, Murphy MR. Efficacy of physostigmine as a pretreatment for organophosphate poisoning. Pharmacol Biochem Behav. 1993;44:343–7.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Laboratory for Myasthenia Gravis Research, Department of Neurology, School of MedicineThe University of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations