Skip to main content

Oncogenes and Tumor Suppressor Genes in Autophagy

  • Chapter
  • First Online:
  • 1957 Accesses

Part of the book series: Current Cancer Research ((CUCR,volume 8))

Abstract

The autophagy pathway has a clear, dual role in cancer development: autophagy inhibition increases tumor initiation, but for established tumors, autophagy inhibitors can potently suppress tumor progression. Given the role of autophagy in tumor initiation, it is perhaps not surprising that many oncogenes that are commonly found mutated in human cancer negatively regulate this process. Conversely a major tumor suppressor pathway, the p53/ARF axis, positively regulates autophagy. Notably, the majority of human tumors contain activated oncogenes that are predicted to lead to hyper-activation the PI3K/AKT/mTOR pathway. Additionally, most tumors contain inactivating mutations in the p53/ARF pathway. Therefore, it is reasonable to predict that cancer cells have an impaired ability to undergo autophagy, but at the same time a hyper-reliance on this pathway to promote survival during metabolic and hypoxic stress. As such, the autophagy pathway is likely to be an Achilles heel for cancer. Exploiting this weakness will be an important future goal for cancer researchers.

Gregor M. Balaburski and Anna Budina have equal contribution to this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abedin MJ et al (2007) Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Differ 14(3):500–510

    Article  PubMed  CAS  Google Scholar 

  • Abida WM, Gu W (2008) p53-Dependent and p53-independent activation of autophagy by ARF. Cancer Res 68(2):352–357

    Article  PubMed  CAS  Google Scholar 

  • Aita VM et al (1999) Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics 59(1):59–65

    Article  PubMed  CAS  Google Scholar 

  • Amaravadi RK et al (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-­induced model of lymphoma. J Clin Invest 117(2):326–336

    Article  PubMed  CAS  Google Scholar 

  • Apel A et al (2008) Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Res 68(5):1485–1494

    Article  PubMed  CAS  Google Scholar 

  • Bekri S et al (1997) Detailed map of a region commonly amplified at 11q13→q14 in human breast carcinoma. Cytogenet Cell Genet 79(1–2):125–131

    Article  PubMed  CAS  Google Scholar 

  • Bensaad K et al (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126(1):107–120

    Article  PubMed  CAS  Google Scholar 

  • Bensaad K, Cheung EC, Vousden KH (2009) Modulation of intracellular ROS levels by TIGAR controls autophagy. EMBO J 28(19):3015–3026

    Article  PubMed  CAS  Google Scholar 

  • Bertwistle D, Sugimoto M, Sherr CJ (2004) Physical and functional interactions of the Arf tumor suppressor protein with nucleophosmin/B23. Mol Cell Biol 24(3):985–996

    Article  PubMed  CAS  Google Scholar 

  • Budanov AV, Karin M (2008) p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134(3):451–460

    Article  PubMed  CAS  Google Scholar 

  • Carew JS et al (2007) Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 110(1):313–322

    Article  PubMed  CAS  Google Scholar 

  • Chen D et al (2005) ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell 121(7):1071–1083

    Article  PubMed  CAS  Google Scholar 

  • Chen Z et al (2009) Differential p53-independent outcomes of p19(Arf) loss in oncogenesis. Sci Signal 2(84):ra44

    Article  PubMed  Google Scholar 

  • Chipuk JE et al (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303(5660):1010–1014

    Article  PubMed  CAS  Google Scholar 

  • Chipuk JE et al (2005) PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 309(5741):1732–1735

    Article  PubMed  CAS  Google Scholar 

  • Coppola D et al (2008a) Down-regulation of Bax-interacting factor-1 in colorectal adenocarcinoma. Cancer 113(10):2665–2670

    Article  PubMed  Google Scholar 

  • Coppola D et al (2008b) Bax-interacting factor-1 expression in prostate cancer. Clin Genitourin Cancer 6(2):117–121

    Article  PubMed  CAS  Google Scholar 

  • Crighton D et al (2006) DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126(1):121–134

    Article  PubMed  CAS  Google Scholar 

  • Degenhardt K et al (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10(1):51–64

    Article  PubMed  CAS  Google Scholar 

  • Degtyarev M et al (2008) Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents. J Cell Biol 183(1):101–116

    Article  PubMed  CAS  Google Scholar 

  • Donehower LA (2002) Does p53 affect organismal aging? J Cell Physiol 192(1):23–33

    Article  PubMed  CAS  Google Scholar 

  • Erlich S et al (2007) Differential interactions between Beclin 1 and Bcl-2 family members. Autophagy 3(6):561–568

    PubMed  CAS  Google Scholar 

  • Feng Z et al (2005) The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci USA 102(23):8204–8209

    Article  PubMed  CAS  Google Scholar 

  • Feng Z et al (2007) The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-­mTOR pathways. Cancer Res 67(7):3043–3053

    Article  PubMed  CAS  Google Scholar 

  • Funderburk SF, Wang QJ, Yue Z (2010) The Beclin 1–VPS34 complex – at the crossroads of autophagy and beyond. Trends Cell Biol 20(6):355–362

    Article  PubMed  CAS  Google Scholar 

  • Furuya N et al (2005) The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy 1(1):46–52

    Article  PubMed  CAS  Google Scholar 

  • Ganley IG et al (2009) ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284(18):12297–12305

    Article  PubMed  CAS  Google Scholar 

  • Gao W et al (2011) Upregulation of human autophagy-initiation kinase ULK1 by tumor suppressor p53 contributes to DNA-damage-induced cell death. Cell Death Differ 18(10):1598–1607

    Article  PubMed  CAS  Google Scholar 

  • Happo L, Strasser A, Cory S (2012) BH3-only proteins in apoptosis at a glance. J Cell Sci 125(Pt 5):1081–1087

    Article  PubMed  CAS  Google Scholar 

  • Harrison B et al (2008) DAPK-1 binding to a linear peptide motif in MAP1B stimulates autophagy and membrane blebbing. J Biol Chem 283(15):9999–10014

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa N et al (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20(7):1981–1991

    Article  PubMed  CAS  Google Scholar 

  • Humbey O et al (2008) The ARF tumor suppressor can promote the progression of some tumors. Cancer Res 68(23):9608–9613

    Article  PubMed  CAS  Google Scholar 

  • Inbal B et al (2002) DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J Cell Biol 157(3):455–468

    Article  PubMed  CAS  Google Scholar 

  • Ionov Y et al (2004) Manipulation of nonsense mediated decay identifies gene mutations in colon cancer cells with microsatellite instability. Oncogene 23(3):639–645

    Article  PubMed  CAS  Google Scholar 

  • Jones RG et al (2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18(3):283–293

    Article  PubMed  CAS  Google Scholar 

  • Jung CH et al (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 20(7):1992–2003

    Article  PubMed  CAS  Google Scholar 

  • Kametaka S et al (1998) Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. J Biol Chem 273(35):22284–22291

    Article  PubMed  CAS  Google Scholar 

  • Karantza-Wadsworth V et al (2007) Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev 21(13):1621–1635

    Article  PubMed  CAS  Google Scholar 

  • Kelly-Spratt KS et al (2004) p19Arf suppresses growth, progression, and metastasis of Hras-driven carcinomas through p53-dependent and -independent pathways. PLoS Biol 2(8):E242

    Article  PubMed  CAS  Google Scholar 

  • Kim MS et al (2008a) Frameshift mutation of UVRAG, an autophagy-related gene, in gastric carcinomas with microsatellite instability. Hum Pathol 39(7):1059–1063

    Article  PubMed  CAS  Google Scholar 

  • Kim SY et al (2008b) Decreased expression of Bax-interacting factor-1 (Bif-1) in invasive urinary bladder and gallbladder cancers. Pathology 40(6):553–557

    Article  PubMed  CAS  Google Scholar 

  • Kruse JP, Gu W (2009) Modes of p53 regulation. Cell 137(4):609–622

    Article  PubMed  CAS  Google Scholar 

  • Kung CP et al (2011) Autophagy in tumor suppression and cancer therapy. Crit Rev Eukaryot Gene Expr 21(1):71–100

    Article  PubMed  CAS  Google Scholar 

  • Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293

    Article  PubMed  CAS  Google Scholar 

  • Lazova R et al (2012) Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome. Clin Cancer Res 18(2):370–379

    Article  PubMed  CAS  Google Scholar 

  • Lee JW et al (2006) Decreased expression of tumour suppressor Bax-interacting factor-1 (Bif-1), a Bax activator, in gastric carcinomas. Pathology 38(4):312–315

    Article  PubMed  CAS  Google Scholar 

  • Lee JW et al (2007) Somatic mutations of BECN1, an autophagy-related gene, in human cancers. APMIS 115(6):750–756

    Article  PubMed  CAS  Google Scholar 

  • Lee IH et al (2012) Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress. Science 336(6078):225–228

    Article  PubMed  CAS  Google Scholar 

  • Leu JI et al (2009) A small molecule inhibitor of inducible heat shock protein 70. Mol Cell 36(1):15–27

    Article  PubMed  CAS  Google Scholar 

  • Levine B, Sinha S, Kroemer G (2008) Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy 4(5):600–606

    PubMed  CAS  Google Scholar 

  • Li H, Jogl G (2009) Structural and biochemical studies of TIGAR (TP53-induced glycolysis and apoptosis regulator). J Biol Chem 284(3):1748–1754

    Article  PubMed  CAS  Google Scholar 

  • Li M et al (2008) Autophagy protects LNCaP cells under androgen deprivation conditions. Autophagy 4(1):54–60

    PubMed  CAS  Google Scholar 

  • Li Z et al (2010) Genetic and epigenetic silencing of the beclin 1 gene in sporadic breast tumors. BMC Cancer 10:98

    Article  PubMed  CAS  Google Scholar 

  • Liang XH et al (1998) Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol 72(11):8586–8596

    PubMed  CAS  Google Scholar 

  • Liang XH et al (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402(6762):672–676

    Article  PubMed  CAS  Google Scholar 

  • Liang C et al (2006) Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 8(7):688–699

    Article  PubMed  CAS  Google Scholar 

  • Liu J et al (2011) Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell 147(1):223–234

    Article  PubMed  CAS  Google Scholar 

  • Livesey KM et al (2012) p53/HMGB1 complexes regulate autophagy and apoptosis. Cancer Res 72(8):1996–2005

    Article  PubMed  CAS  Google Scholar 

  • Lorin S et al (2009) c-Jun NH2-terminal kinase activation is essential for DRAM-dependent induction of autophagy and apoptosis in 2-methoxyestradiol-treated Ewing sarcoma cells. Cancer Res 69(17):6924–6931

    Article  PubMed  CAS  Google Scholar 

  • Ma XH et al (2011) Measurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma. Clin Cancer Res 17(10):3478–3489

    Article  PubMed  CAS  Google Scholar 

  • Mah LY et al (2012) DRAM-1 encodes multiple isoforms that regulate autophagy. Autophagy 8(1):18–28

    Article  PubMed  CAS  Google Scholar 

  • Maiuri MC et al (2007a) Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J 26(10):2527–2539

    Article  PubMed  CAS  Google Scholar 

  • Maiuri MC et al (2007b) BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L). Autophagy 3(4):374–376

    PubMed  CAS  Google Scholar 

  • Martoriati A et al (2005) dapk1, encoding an activator of a p19ARF-p53-mediated apoptotic checkpoint, is a transcription target of p53. Oncogene 24(8):1461–1466

    Article  PubMed  CAS  Google Scholar 

  • Mathew R et al (2007) Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev 21(11):1367–1381

    Article  PubMed  CAS  Google Scholar 

  • Miracco C et al (2007) Protein and mRNA expression of autophagy gene Beclin 1 in human brain tumours. Int J Oncol 30(2):429–436

    PubMed  CAS  Google Scholar 

  • Naidu SR, Lakhter AJ, Androphy EJ (2012) PIASy-mediated Tip60 sumoylation regulates p53-­induced autophagy. Cell Cycle 11(14):2717–2728

    Article  PubMed  CAS  Google Scholar 

  • Nicklin P et al (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136(3):521–534

    Article  PubMed  CAS  Google Scholar 

  • Parkhitko A et al (2011) Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)-dependent. Proc Natl Acad Sci USA 108(30):12455–12460

    Article  PubMed  CAS  Google Scholar 

  • Pattingre S et al (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122(6):927–939

    Article  PubMed  CAS  Google Scholar 

  • Piha-Paul SA, Hong DS, Kurzrock R (2011) Response of lymphangioleiomyomatosis to a mammalian target of rapamycin inhibitor (temsirolimus)-based treatment. J Clin Oncol 29(12):e333–e335

    Article  PubMed  Google Scholar 

  • Pimkina J, Murphy ME (2009) ARF, autophagy and tumor suppression. Autophagy 5(3):397–399

    Article  PubMed  CAS  Google Scholar 

  • Pimkina J, Murphy ME (2011) Interaction of the ARF tumor suppressor with cytosolic HSP70 contributes to its autophagy function. Cancer Biol Ther 12(6):503–509

    Article  PubMed  CAS  Google Scholar 

  • Pimkina J et al (2009) ARF induces autophagy by virtue of interaction with Bcl-xl. J Biol Chem 284(5):2803–2810

    Article  PubMed  CAS  Google Scholar 

  • Pomerantz J et al (1998) The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 92(6):713–723

    Article  PubMed  CAS  Google Scholar 

  • Qadir MA et al (2008) Macroautophagy inhibition sensitizes tamoxifen-resistant breast cancer cells and enhances mitochondrial depolarization. Breast Cancer Res Treat 112(3):389–403

    Article  PubMed  CAS  Google Scholar 

  • Qi Y et al (2004) p19ARF directly and differentially controls the functions of c-Myc independently of p53. Nature 431(7009):712–717

    Article  PubMed  CAS  Google Scholar 

  • Qu X et al (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112(12):1809–1820

    PubMed  CAS  Google Scholar 

  • Quelle DE et al (1995) Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83(6):993–1000

    Article  PubMed  CAS  Google Scholar 

  • Rashmi R et al (2008) BH3-only protein BIK induces caspase-independent cell death with autophagic features in Bcl-2 null cells. Oncogene 27(10):1366–1375

    Article  PubMed  CAS  Google Scholar 

  • Reef S et al (2006) A short mitochondrial form of p19ARF induces autophagy and caspase-­independent cell death. Mol Cell 22(4):463–475

    Article  PubMed  CAS  Google Scholar 

  • Saeki K et al (2000) Bcl-2 down-regulation causes autophagy in a caspase-independent manner in human leukemic HL60 cells. Cell Death Differ 7(12):1263–1269

    Article  PubMed  CAS  Google Scholar 

  • Scherz-Shouval R et al (2010) p53-dependent regulation of autophagy protein LC3 supports cancer cell survival under prolonged starvation. Proc Natl Acad Sci USA 107(43):18511–18516

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ et al (2005) p53-Dependent and -independent functions of the Arf tumor suppressor. Cold Spring Harb Symp Quant Biol 70:129–137

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto M et al (2003) Nucleolar Arf tumor suppressor inhibits ribosomal RNA processing. Mol Cell 11(2):415–424

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y et al (2007) Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 9(10):1142–1151

    Article  PubMed  CAS  Google Scholar 

  • Tao W, Levine AJ (1999) P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc Natl Acad Sci USA 96(12):6937–6941

    Article  PubMed  CAS  Google Scholar 

  • Tasdemir E et al (2008a) A dual role of p53 in the control of autophagy. Autophagy 4(6):810–814

    PubMed  CAS  Google Scholar 

  • Tasdemir E et al (2008b) Regulation of autophagy by cytoplasmic p53. Nat Cell Biol 10(6):676–687

    Article  PubMed  CAS  Google Scholar 

  • Tasdemir E et al (2008c) p53 represses autophagy in a cell cycle-dependent fashion. Cell Cycle 7(19):3006–3011

    Article  PubMed  CAS  Google Scholar 

  • Tavernarakis N et al (2008) The effects of p53 on whole organism longevity are mediated by autophagy. Autophagy 4(7):870–873

    PubMed  CAS  Google Scholar 

  • Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8(4):275–283

    Article  PubMed  CAS  Google Scholar 

  • Weber JD et al (1999) Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol 1(1):20–26

    Article  PubMed  CAS  Google Scholar 

  • Wei Y et al (2008) JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30(6):678–688

    Article  PubMed  CAS  Google Scholar 

  • Yee KS et al (2009) PUMA- and Bax-induced autophagy contributes to apoptosis. Cell Death Differ 16(8):1135–1145

    Article  PubMed  CAS  Google Scholar 

  • Yue Z et al (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100(25):15077–15082

    Article  PubMed  CAS  Google Scholar 

  • Zalckvar E et al (2009a) Phosphorylation of Beclin 1 by DAP-kinase promotes autophagy by weakening its interactions with Bcl-2 and Bcl-XL. Autophagy 5(5):720–722

    Article  PubMed  CAS  Google Scholar 

  • Zalckvar E et al (2009b) DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep 10(3):285–292

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Ney PA (2009) Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ 16(7):939–946

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Xiong Y, Yarbrough WG (1998) ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92(6):725–734

    Article  PubMed  CAS  Google Scholar 

  • Zhu H et al (2009) Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy 5(6):816–823

    PubMed  CAS  Google Scholar 

  • Zilfou JT, Lowe SW (2009) Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol 1(5):a001883

    Article  PubMed  CAS  Google Scholar 

  • Zou Z et al (2012) MicroRNA-30a sensitizes tumor cells to cis-platinum via suppressing beclin 1-mediated autophagy. J Biol Chem 287(6):4148–4156

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maureen E. Murphy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Balaburski, G.M., Budina, A., Murphy, M.E. (2013). Oncogenes and Tumor Suppressor Genes in Autophagy. In: Wang, HG. (eds) Autophagy and Cancer. Current Cancer Research, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6561-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6561-4_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6560-7

  • Online ISBN: 978-1-4614-6561-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics